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Zona Universitaria 78290, San Luis Potośı, Mexico (e-mail:
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Abstract: In this paper, a Proportional-Integral-Derivative (PID) type controller for the global
position stabilization of robot manipulators with bounded inputs is proposed. With respect to
previous approaches of the kind, it represents a simplifying alternative through its SPD-SI
structure that involves generalized saturation functions. Moreover, it is mainly characterized by
its very simple control-gain tuning criterion, the simplest hitherto obtained while guaranteeing
the global regulation objective —avoiding input saturation— in the considered analytical
framework. Experimental results on a 2-degree-of-freedom direct-drive manipulator corroborate
the efficiency of the proposed controller.
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1. INTRODUCTION

In real applications where robot manipulators are involved,
PID controllers are commonly used in practice (Rocco,
1996). Several versions of such controllers using nonlinear
structures, mainly oriented to guarantee global regulation,
have been developed for instance in (Kelly, 1998). Never-
theless, such modified schemes consider that actuators can
furnish any required torque value, which is not realistic.
Moreover, unexpected or undesirable behaviors could take
place in view of the saturation nonlinearity that gener-
ally relates the controller outputs to the plant inputs in
real applications (Krikelis and Barkas, 1984). Under the
consideration of such a constraint, several schemes have
been further presented in the literature. For instance, feed-
back controllers with Saturating-Proportional (SP) and
Saturating-Derivative (SD) actions under exact gravity
compensation (Santibáñez and Kelly, 1996) were some of
the earlier proposals. Parametric dependency has been fur-
ther reduced through bounded adaptive approaches with
discontinuous structures (Colbaugh et al., 1997) as well
as continuous feedback approaches (López-Araujo et al.,
2013a). Nevertheless, these algorithms remain partially
model dependent by involving the regression matrix impli-
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cated in the linear structural characterization of the grav-
ity force vector with respect to its parametric coefficient
set.

On the other hand, bounded PID-type controllers have
been further developed alleviating the model dependence.
For instance, semiglobal regulators with different saturat-
ing structures have been proposed in (Alvarez-Ramirez
et al., 2003) and (Alvarez-Ramirez et al., 2008). The
stability analyses in these studies are developed through
the singular perturbation methodology which shows the
existence of a suitable tuning mainly characterized by
the requirement of small enough integral action gains and
sufficiently high proportional and derivative ones. As far
as the authors are aware, the first bounded PID-type
algorithm for global position stabilization was proposed
in (Gorez, 1999). Nonetheless, the structure of the con-
troller developed therein is quite complex. Other studies
have devoted efforts to solve the global PID position
stabilization problem for manipulators with constrained
inputs through simpler structures, giving rise to the SP-
SI-SD type algorithm developed in (Meza et al., 2005)
via passivity theory and later on in (Su et al., 2010)
through Lyapunov stability analysis, and to the SPD-
SI type scheme presented in (Santibáñez et al., 2008).
However, some of these controllers were developed using
a particular structure, namely involving a specific satura-
tion function —more precisely the hyperbolic tangent—
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and applying the control gains to the saturating actions
externally. This constrains the control gains to be small
enough to guarantee the avoidance of the input saturation
phenomenon, which severely restricts their choice resulting
in important limitations on the closed-loop performance.
Furthermore, the stability analyses of the previous PID-
type approaches give rise to several complex conditions
on the control gains that hinder the tuning task. Such
limitations have motivated this work, where a PID-type
global regulator for robot manipulators with constrained
inputs is proposed. It keeps an SPD-SI structure that
involves generalized saturation functions and releases the
control gains from saturation avoidance inequalities. More
importantly, the developed algorithm is mainly charac-
terized by its very simple control-gain tuning criterion;
simplification of the tuning conditions for PID-type con-
trollers has been a research subject for several years (Kelly,
1995) and had never been achieved to be as simple as it is
shown in this paper. Experimental tests on a 2-degree-
of-freedom (DOF) direct-drive manipulator corroborate
the contributed result. It is worth further pointing out
that the SPD-SI approach designed in this work extends
the previous result in (Mendoza et al., 2014), where the
proposed control scheme kept an SP-SI-SD structure.

2. PRELIMINARIES

Let X ∈ Rm×n and y ∈ Rn. Throughout this paper, Xij

represents the element of X at its ith row and jth column,
and yi denotes the ith element of y. 0n stands for the
origin of Rn and In represents the n × n identity matrix.
‖ · ‖ stands for the standard Euclidean norm for vectors,

i.e. ‖y‖ =
√∑n

i=1 y
2
i , and induced norm for matrices, i.e.

‖X‖ =
√
λmax{XTX} where λmax{XTX} represents the

maximum eigenvalue of XTX. For a continuous scalar
function ψ : R 7→ R, ψ′denotes its derivative, when
differentiable, D+ψ its upper right-hand (Dini) derivative,

i.e. D+ψ(ς) = lim suph→0+
ψ(ς+h)−ψ(ς)

h , with D+ψ = ψ′

at points of differentiability (Khalil, 2002, Appendix C.2),
and ψ−1 its inverse, when invertible.

Consider the n-DOF serial rigid manipulator dynamics
with viscous friction (Kelly et al., 2005)

H(q)q̈ + C(q, q̇)q̇ + F q̇ + g(q) = τ (1)

where q, q̇, q̈ ∈ Rn are, respectively, the position (general-
ized coordinates), velocity, and acceleration vectors, H(q)
∈ Rn×n is the inertia matrix, and C(q, q̇)q̇, F q̇, g(q), τ ∈
Rn are respectively the vectors of Coriolis and centrifugal,
viscous friction, gravity, and external input generalized
forces, with F ∈ Rn×n being a positive definite constant
diagonal matrix whose entries fi > 0, i = 1, . . . , n, are the
viscous friction coefficients, and g(q) = ∇U(q), with U(q)
being the gravitational potential energy, or equivalently

U(q) = U(q0) +

∫ q

q0

gT (r)dr (2a)

for any q, q0 ∈ Rn, with 1

1 Since g(q) is the gradient of the gravitational potential energy
U(q), a scalar function, then, for any q, q0 ∈ Rn, the inverse relation
U(q) = U(q0) +

∫ q

q0
gT (r)dr is independent of the integration path

(Khalil, 2002, p. 120). Eq. (2b) considers integration along the axes.
This way, on every axis (i.e. at every integral in the right-hand side of

∫ q

q0

gT (r)dr =

∫ q1

q01

g1(r1, q02, . . . , q0n)dr1

+

∫ q2

q02

g2(q1, r2, q03, . . . , q0n)dr2

+ · · ·+
∫ qn

q0n

gn(q1, . . . , qn−1, rn)drn (2b)

Some well-known properties characterizing such a dynam-
ical model are recalled here (Kelly et al., 2005, Chap. 4).

Subsequently, we denote Ḣ the rate of change of H, i.e.,

Ḣ : Rn × Rn → Rn×n : (q, q̇) 7→
[
∂Hij

∂q (q)q̇
]
.

Property 1. H(q) is a continuously differentiable matrix
function being positive definite, symmetric and bounded
on Rn, i.e. such that µmIn ≤ H(q) ≤ µMIn, ∀q ∈ Rn, for
some constants µM ≥ µm > 0.

Property 2. The Coriolis matrix C(q, q̇) satisfies:

2.1. ‖C(q, q̇)‖ ≤ kC‖q̇‖, ∀(q, q̇) ∈ Rn × Rn, for some
constant kC ≥ 0;

2.2. for all (q, q̇) ∈ Rn×Rn, q̇T
[

1
2Ḣ(q, q̇)− C(q, q̇)

]
q̇ = 0

and actually Ḣ(q, q̇) = C(q, q̇) + CT (q, q̇).

Property 3. The viscous friction coefficient matrix satisfies
fm‖q̇‖2 ≤ q̇TF q̇ ≤ fM‖q̇‖2, ∀q̇ ∈ Rn, where 0 < fm ,
mini{fi} ≤ maxi{fi} , fM .

Property 4. The gravity force term g(q) is a continuously
differentiable bounded vector function with bounded Ja-
cobian matrix 2 ∂g

∂q . Equivalently, every element of the

gravity force vector, gi(q), i = 1, . . . , n, satisfies:

4.1. |gi(q)| ≤ Bgi, ∀q ∈ Rn, for some constant Bgi > 0;

4.2. ∂gi
∂qj

, j = 1, . . . , n, exist and are continuous and

such that
∣∣∣ ∂gi∂qj

(q)
∣∣∣ ≤ ∥∥∥∂g∂q (q)

∥∥∥ ≤ kg, ∀q ∈ Rn, for

some positive constant kg, and consequently |gi(x)−
gi(y)| ≤ ‖g(x)− g(y)‖ ≤ kg‖x− y‖, ∀x, y ∈ Rn.

Let us suppose that the absolute value of each input τi is
constrained to be smaller than a given saturation bound
Ti > 0, i.e., |τi| ≤ Ti, i = 1, . . . , n. More precisely,
letting ui represent the control variable (controller output)
relative to the ith degree of freedom, we have that

τi = Ti sat(ui/Ti) (3)

where sat(·) is the standard saturation function, i.e.
sat(ς) = sign(ς) min {|ς|, 1}.
From Eqs. (1),(3), one sees that Ti ≥ Bgi (see Property
4.1), ∀i ∈ {1, . . . , n}, is a necessary condition for the robot
to be stabilizable at any desired equilibrium configuration
qd ∈ Rn. Thus, the following assumption turns out to be
important within the analytical setting considered here.

Assumption 1. Ti > αBgi, i = 1, . . . , n, for some α ≥ 1.

Functions fitting the following definition will be involved.

Definition 1. Given a positive constant M , a nondecreas-
ing Lipschitz-continuous function σ : R → R is said to be
a generalized saturation with bound M if

(2b)), the corresponding coordinate varies (according to the specified
integral limits) while the rest of the coordinates remain constant.
2 Property 4 is satisfied e.g. by robots having only revolute joints
(Kelly et al., 2005, §4.3).
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(a) ςσ(ς) > 0, ∀ς 6= 0;
(b) |σ(ς)| ≤M , ∀ς ∈ R.

If in addition

(c) σ(ς) = ς when |ς| ≤ L,

for some positive constant L ≤M , σ is said to be a linear
saturation for (L,M).

Lemma 1. Let σ : R→ R be a generalized saturation with
bound M and let k be a positive constant. Then

1. lim|ς|→∞D+σ(ς) = 0;

2. ∃σ′M ∈ (0,∞) such that 0 ≤ D+σ(ς) ≤ σ′M , ∀ς ∈ R;
3. |σ(kς + η)− σ(η)| ≤ σ′Mk|ς|, ∀ς, η ∈ R;

4. σ2(kς)
2kσ′

M
≤
∫ ς

0
σ(kr)dr ≤ kσ′

M ς2

2 , ∀ς ∈ R;

5.
∫ ς

0
σ(kr)dr > 0, ∀ς 6= 0;

6.
∫ ς

0
σ(kr)dr →∞ as |ς| → ∞;

7. if σ is strictly increasing, then
(a) ς[σ(ς + η)− σ(η)] > 0, ∀ς 6= 0, ∀η ∈ R;
(b) for any constant a ∈ R, σ̄(ς) = σ(ς+a)−σ(a) is a

strictly increasing generalized saturation function
with bound M̄ = M + |σ(a)|.

Proof. Item 3 is a direct consequence of the Lipschitz-
continuity of σ and item 2 of the statement (as analogously
stated e.g. in (Khalil, 2002, Lemma 3.3) under continuous
differentiability). The rest of the items are proven in
(López-Araujo et al., 2013a). 2

3. THE PROPOSED CONTROL SCHEME

The proposed SPD-SI control law is defined as

u(q, q̇, φ) = −sP (KP q̄ +KD q̇) + sI(KIφ) (4)

where q̄ = q − qd, for any constant desired equilibrium
position vector qd ∈ Rn; φ ∈ Rn is the output vector
variable of the integral-action dynamics, defined as 3

φ̇ = −q̇ − εK−1
P sP (KP q̄) (5)

KP = diag[kP1, . . . , kPn], KD = diag[kD1, . . . , kDn] and
KI = diag[kI1, . . . , kIn], with kDi > 0, kIi > 0, i =
1, . . . , n, and positive P gains such that

kPm , min
i
{kPi} > kg (6)

(see Property 4.2); for any x ∈ Rn, sP (x) =
(
σP1(x1), . . . ,

σPn(xn)
)T

and sI(x) =
(
σI1(x1), . . . , σIn(xn)

)T
, with

σPi(·), i = 1, . . . , n, being strictly increasing linear sat-
uration functions for (LPi,MPi), and σIi(·), i = 1, . . . , n,
being strictly increasing generalized saturation functions
with bounds MIi, such that

LPi > 2Bgi (7a)

MIi > Bgi (7b)

MPi +MIi < Ti (7c)

i = 1, . . . , n; and ε (in (5)) is a positive constant satisfying

ε < εM , min{ε1, ε2} (8)

where

ε1 ,

√
β0βPµm
µ2
M

, ε2 ,
fm

βM + (fM+βD)2

4β0kPm

<
fm
βM

, ε3

3 Under time parametrization of the system trajectories, the
integral-action dynamics in Eqs. (5) adopts the (equivalent) integral-

equation form φ(t) = φ(0)−
∫ t

0

[
q̇(ς)+εK−1

P sP
(
KP q̄(ς)

)]
dς, for any

initial vector values q̄(0), q̇(0), φ(0) ∈ Rn.

with β0 , 1−max
{

kg
kPm

,maxi

{
2Bgi

LPi

}}
(observe that by

inequalities (6) and (7a): 0 < β0 < 1), βP , mini

{
kPi

σ′
PiM

}
,

βD = maxi{kDiσ′PiM}, βM , kCBP + µMσ
′
PM , BP ,√∑n

i=1

(
MPi

kPi

)2
, σ′PM , maxi {σ′PiM}, σ′PiM being the

positive bound of D+σPi(·), in accordance to item 2 of
Lemma 1, and µm, µM , kC , fm, fM , Bgi and kg as defined
through Properties 1–4.

Remark 1. Let us note that inequalities (7) (stating con-
ditions on the saturation function parameters) require the
satisfaction of Assumption 1 with α = 3. Similar con-
ditions on the control input bounds have been required
by other approaches where input constraints have been
considered (Colbaugh et al., 1997). Previous saturating
PID-type schemes that do not explicitly include a similar
or analog condition on the control input bounds are not
always exhaustive in the search for the whole set of explicit
conditions that support the developed closed loop analy-
ses. Moreover, the way how such analyses are addressed
lead to additional constraints on the control gains which
complicate the tuning task and restrict the performance
adjustment/improvement possibilities. Observe that the
control gains in the approach proposed in this work are not
tied to the satisfaction of any additional tuning restriction
apart from inequality (6), and condition (8) concerning the
integral-action-related parameter ε.

4. CLOSED-LOOP ANALYSIS

Consider system (1),(3) taking u = u(q, q̇, φ) as defined
through Eqs. (4)-(5). Observe that the satisfaction of (7c),
under the consideration of (3), shows that

Ti > |ui(q, q̇, φ)| = |ui| = |τi| (9)

i = 1, . . . , n, ∀(q, q̇, φ) ∈ Rn ×Rn ×Rn. Hence, the closed-
loop dynamics takes the form

H(q)q̈ + C(q, q̇)q̇ + F q̇ + g(q)

= −sP (KP q̄ +KD q̇) + s̄I(φ̄) + g(qd) (10a)

˙̄φ = −q̇ − εK−1
P sP (KP q̄) (10b)

where φ̄ = φ− φ∗ and

s̄I(φ̄) = sI(KI φ̄+KIφ
∗)− sI(KIφ

∗) (11)

with φ∗ = (φ∗1, . . . , φ
∗
n)T such that sI(KIφ

∗) = g(qd), or
equivalently φ∗i = σ−1

Ii

(
gi(qd)

)
/kIi, i = 1, . . . , n (notice

that their strictly increasing character renders the gener-
alized saturation functions σIi invertible). Observe that,
by item 7b of Lemma 1, the elements of s̄I(φ̄) in Eq. (11),
i.e. σ̄Ii(φ̄i) = σIi(kIiφ̄i + kIiφ

∗
i )− σIi(kIiφ∗i ), i = 1, . . . , n,

turn out to be strictly increasing generalized saturations.

Proposition 1. Consider the closed-loop system in Eqs.
(10), under the satisfaction of Assumption 1 with α =
3 and inequalities (7). Thus, for any positive definite
diagonal matrices KD, KI and KP such that inequality
(6) is satisfied and any ε fulfilling inequality (8), global
asymptotic stability of the closed-loop trivial solution
(q̄, φ̄)(t) ≡ (0n, 0n) is guaranteed with |τi(t)| = |ui(t)| <
Ti, i = 1, . . . , n, ∀t ≥ 0.

Proof. By (9), one sees that, along the system trajectories,
|τi(t)| = |ui(t)| < Ti, ∀t ≥ 0. This proves that, under the
proposed scheme, the input saturation values, Ti, are never
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reached. Now, in order to carry out the stability analysis,
a scalar function V (q̄, q̇, φ̄) is defined as follows 4

V =
1

2
q̇TH(q)q̇ + εsTP (KP q̄)K

−1
P H(q)q̇ + U(q)− U(qd)

− gT (qd)q̄ +

∫ q̄

0n

sTP (KP r)dr +

∫ φ̄

0n

s̄TI (r)dr

where
∫ q̄

0n
sTP (KP r)dr =

∑n
i=1

∫ q̄i
0
σPi(kPiri)dri,

∫ φ̄
0n
s̄TI (r)dr =∑n

i=1

∫ φ̄i

0
σ̄Ii(ri)dri and recall that U represents the gravi-

tational potential energy. Note, by recalling Eqs. (2), that
the defined scalar function can be rewritten as

V =
1

2
q̇TH(q)q̇ + εsTP (KP q̄)K

−1
P H(q)q̇ + Ucγ0(q̄)

+ γ0

∫ q̄

0n

sTP (KP r)dr +

∫ φ̄

0n

s̄TI (r)dr

where

Ucγ0(q̄) =

∫ q̄

0n

[g(r + qd)− g(qd) + (1− γ0)sP (KP r)]
T
dr

=

n∑
i=1

∫ q̄i

0

[ḡi(ri)− gi(qd) + (1− γ0)σPi(kPiri)] dri

with
ḡ1(r1) = g1(r1 + qd1, qd2, . . . , qdn)
ḡ2(r2) = g2(q1, r2 + qd2, qd3, . . . , qdn)

...
ḡn(rn) = gn(q1, q2, . . . , qn−1, rn + qdn)

and γ0 is a constant satisfying

β0
ε2

ε2
1

< γ0 < β0 (12)

(observe, from inequality (8) and the definition of β0, that
0 < β0ε

2/ε2
1 < β0 < 1). Under this consideration, Ucγ0(q̄)

turns out to be lower-bounded by

W10(q̄) =

n∑
i=1

w10
i (q̄i) (13a)

where

w10
i (q̄i) ,


kli
2
q̄2
i if |q̄i| ≤ q̄∗i

kliq̄
∗
i

(
|q̄i| −

q̄∗i
2

)
if |q̄i| > q̄∗i

(13b)

with 0 < kli ≤ (1−γ0)kPi−kg and q̄∗i = [LPi− 2Bgi/(1−
γ0)]/kPi (note that by inequality (12) and the definition
of β0: 0 < (1 − γ0)kPi − kg and q̄∗i > 0); this is proven in
(Mendoza et al., 2014, Appendix I). From this, Property
1 and item 4 of Lemma 1, we have

V ≥ µm
2
‖q̇‖2 − εµM‖K−1

P sP (KP q̄)‖‖q̇‖+W10(q̄)

+ γ0

n∑
i=1

σ2
Pi(kPiq̄i)

2kPiσ′PiM
+

∫ φ̄

0n

s̄TI (r)dr

≥W11(q̄, q̇) +W10(q̄) +

∫ φ̄

0n

s̄TI (r)dr (14)

4 Note that, in the error variable space, q = q̄ + qd. Consequently
H(q) = H(q̄ + qd), C(q, q̇) = C(q̄ + qd, q̇) and g(q) = g(q̄ + qd).
However, for the sake of simplicity, H(q), C(q, q̇), and g(q) are
used throughout the paper. Moreover, the arguments of V and
its derivative along the system trajectories, V̇ , will be dropped
throughout the developments.

where

W11(q̄, q̇)

=
µm
2
‖q̇‖2 − εµM‖K−1

P sP (KP q̄)‖‖q̇‖

+
γ0βP

2
‖K−1

P sP (KP q̄)‖2

=
1

2

(
‖K−1

P sP (KP q̄)‖
‖q̇‖

)T
Q11

(
‖K−1

P sP (KP q̄)‖
‖q̇‖

)
withQ11 =

(
γ0βP −εµM
−εµM µm

)
. By inequality (12),W11(q̄, q̇)

is positive definite (since with ε < εM ≤ ε1, in accordance
to inequality (8), any γ0 satisfying (12) renders Q11 posi-
tive definite) and note that W11(0n, q̇) → ∞ as ‖q̇‖ → ∞
while, from Eqs. (13) and items 5-6 of Lemma 1, it is clear
that W10 and the integral term in the right-hand side of
(14) are radially unbounded positive definite functions of
q̄ and φ̄ respectively. Thus, V (q̄, q̇, φ̄) is concluded to be
positive definite and radially unbounded. Its upper right-
hand derivative along the system trajectories, V̇ = D+V
(Michel et al., 2008, §6.1A), is given by

V̇ = − q̇TF q̇ − q̇T
[
sP (KP q̄ +KD q̇)− sP (KP q̄)

]
− εsTP (KP q̄)K

−1
P F q̇ + εq̇TC(q, q̇)K−1

P sP (KP q̄)

− εsTP (KP q̄)K
−1
P

[
g(q)− g(qd) + sP (KP q̄)

]
− εsTP (KP q̄)K

−1
P

[
sP (KP q̄ +KD q̇)− sP (KP q̄)

]
+ εq̇T s′P (KP q̄)H(q)q̇

where H(q)q̈ and ˙̄φ have been replaced by their equiv-
alent expressions from the closed-loop dynamics in Eqs.
(10), Property 2.2 has been used and s′P (KP q̄) ,
diag[D+σP1(kP1q̄1), . . . , D+σPn(kPnq̄n)]. The resulting ex-
pression can be rewritten as

V̇ = − q̇T
[
sP (KP q̄ +KD q̇)− sP (KP q̄)

]
− q̇TF q̇

− εsTP (KP q̄)K
−1
P F q̇ + εq̇TC(q, q̇)K−1

P sP (KP q̄)

− εWγ1(q̄)− εγ1s
T
P (KP q̄)K

−1
P KPK

−1
P sP (KP q̄)

− εsTP (KP q̄)K
−1
P

[
sP (KP q̄ +KD q̇)− sP (KP q̄)

]
+ εq̇T s′P (KP q̄)H(q)q̇

where

Wγ1(q̄)

= sTP (KP q̄)K
−1
P [(1− γ1)sP (KP q̄) + g(q)− g(qd)]

=

n∑
i=1

[
(1− γ1)

kPi
σ2
Pi(kPiq̄i) +

σPi(kPiq̄i)

kPi
[gi(q)− gi(qd)]

]
and γ1 is a constant satisfying

β0
ε

ε2

[
ε3 − ε2

ε3 − ε

]
< γ1 < β0 (15)

(from inequality (8) and the definition of β0, one verifies,
after simple developments, that 0 < β0ε(ε3 − ε2)/[ε2(ε3 −
ε)] < β0 < 1; in particular εε2/ε3 < ε < ε2 ⇐⇒
εε2 < εε3 < ε2ε3 ⇐⇒ 0 < ε(ε3 − ε2) < ε2(ε3 −
ε) ⇐⇒ 0 < ε(ε3 − ε2)/[ε2(ε3 − ε)] < 1). Under this
consideration, Wγ1(q̄) turns out to be lower-bounded by

W20(q̄) =
n∑
i=1

w20
i (q̄i) (16a)

where
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w20
i (q̄i) =

{
aiq̄

2
i if |q̄i| ≤ LPi/kPi

$i(q̄i) if |q̄i| > LPi/kPi
(16b)

with $i(q̄i) = bi
kPi

(
|σPi(kPiq̄i)| − LPi

)
+ ai

(
LPi

kPi

)2

, bi =

(1 − γ1)LPi − 2Bgi, ai = min
{
d, bikPi

LPi

}
and d = (1 −

γ1)kPm−kg (notice, from inequality (15) and the definition
of β0, that bi > 0 and d > 0, hence ai > 0); this is proven in
(Mendoza et al., 2014, Appendix II). From this, Properties
1, 2.1 and 3, items 2 and 3 of Lemma 1 and (b) of Definition
1, and the positive definite character of KP , we have that

V̇ ≤ − q̇T
[
sP (KP q̄ +KD q̇)− sP (KP q̄)

]
− fm‖q̇‖2

+ εfM‖K−1
P sP (KP q̄)‖‖q̇‖+ εkCBP ‖q̇‖2

− εγ1kPm‖K−1
P sP (KP q̄)‖2 + εµMσ

′
PM‖q̇‖2

+ εβD‖K−1
P sP (KP q̄)‖‖q̇‖ − εWγ1(q̄)

≤ − q̇T
[
sP (KP q̄ +KD q̇)− sP (KP q̄)

]
− εW21(q̄, q̇)− εW20(q̄)

(17)

where

W21(q̄, q̇) = γ1kPm‖K−1
P sP (KP q̄)‖2 +

(
fm
ε
− βM

)
‖q̇‖2

− (fM + βD)‖K−1
P sP (KP q̄)‖‖q̇‖

=

(
‖K−1

P sP (KP q̄)‖
‖q̇‖

)T
Q21

(
‖K−1

P sP (KP q̄)‖
‖q̇‖

)
with

Q21 =

 γ1kPm −fM + βD
2

−fM + βD
2

fm
ε
− βM



=

γ1kPm Q21
12

Q21
12 βM

(
ε3 − ε
ε

)


with Q21
12 = −

√
β0βMkPm

(
ε3−ε2
ε2

)
. By inequality (15),

W21(q̄, q̇) is positive definite (since with ε < εM ≤ ε2 < ε3,
in accordance to inequality (8), any γ1 satisfying (15)
renders Q21 positive definite) while, from Eqs. (16), it is
clear that W20 is a positive definite function of q̄ and,
from item 7a of Lemma 1, the first term in the right-
hand side of (17) is negative definite with respect to q̇

(uniformly in q̄). Hence, V̇ (q̄, q̇, φ̄) ≤ 0 with V̇ (q̄, q̇, φ̄) =
0 ⇐⇒ (q̄, q̇) = (0n, 0n). Further, from the closed-loop
dynamics in Eqs. (10), we see that q̄(t) ≡ q̇(t) ≡ 0n =⇒
q̈(t) ≡ 0n =⇒ s̄I

(
φ̄(t)

)
≡ 0n =⇒ φ̄(t) ≡ 0n (at any

(q̄, q̇, φ̄) on Z = {(x, y, z) ∈ Rn × Rn × Rn : x = y = 0n}
with φ̄ 6= 0n, the resulting unbalanced force term s̄I(φ̄)
acts on the closed-loop dynamics forcing the system tra-
jectories to leave Z). Therefore, by the invariance theory
(Michel et al., 2008, §7.2) —more precisely by (Michel
et al., 2008, Corollary 7.2.1)—, the closed-loop trivial
solution (q̄, φ̄)(t) ≡ (0n, 0n) is concluded to be globally
asymptotically stable, which completes the proof. 2

5. EXPERIMENTAL RESULTS

In order to corroborate the efficiency of the proposed SPD-
SI control scheme, real-time tests were implemented using

a 2-DOF direct-drive robot manipulator. The experimen-
tal setup is a 2-revolute-joint robot arm located at the
Instituto Tecnológico de la Laguna, Mexico, previously
used in (López-Araujo et al., 2013a). The robot actuators
are direct-drive brushless servomotors operated in torque
mode, i.e. they act as torque sources and receive an ana-
log voltage as a torque reference signal. Joint positions
are obtained using incremental encoders on the motors.
In order to get the encoder data and generate reference
voltages, the robot includes a motion control board based
on a DSP 32-bit floating point microprocessor. The control
algorithm is executed at a 2.5 millisecond sampling period
on a PC-host computer.

For the experimental manipulator, Properties 1–4 are
satisfied with µm = 0.088 kg·m2, µM = 2.533 kg·m2, kC =
0.1455 kg·m2, fm = 0.175 kg·m2/s, fM = 2.288 kg·m2/s,
Bg1 = 40.29 Nm, Bg2 = 1.825 Nm and kg = 40.373
Nm/rad. The maximum allowed torques (input saturation
bounds) are T1 = 150 Nm and T2 = 15 Nm for the first
and second links respectively. From these data, one easily
corroborates that Assumption 1 is fulfilled with α = 3.

Letting

σ(ς) =

{
ς ∀|ς| ≤ L
ρ(ς;L,M) ∀|ς| > L

where ρ(ς;L,M) = sign(ς)L+ (M − L) tanh
(
ς−sign(ς)L
M−L

)
,

for 0 < L < M , the saturation functions used for the
implementation were defined as σPi(ς) = σ(ς;LPi,MPi)
and σIi(ς) = σ(ς;LIi,MIi), i = 1, 2. Note that with
these saturation functions, we have σ′PiM = σ′IiM = 1,
∀i ∈ {1, 2}. The saturation parameters were selected in
order to satisfy inequalities (7) as (all of them expressed
in Nm): MP1 = 90, MP2 = 10, LPi = 0.9MPi, MI1 = 41,
MI2 = 2 and LIi = 0.9MIi, i = 1, 2.

For comparison purposes, additional experiments were im-
plemented using the algorithm proposed in (Su et al.,
2010) (choice made taking into account the analog na-
ture of the compared algorithms: globally stabilizing in a
bounded-input context, and the recent appearance of (Su
et al., 2010)), i.e.

u = −KPTanh(q̄)−KDTanh(q̇)−KITanh(φ)

φ̇ = η2q̇ + ηTanh(q̄)

where η is a (sufficiently large) positive constant and
Tanh(x) = (tanhx1, . . . , tanhxn)T for any x ∈ Rn. For the
sake of simplicity, this algorithm is subsequently referred
to as the S10 controller.

At all the experiments, the desired configuration was fixed
at qd = (qd1, qd2)T = (π/4, π/2)T [rad]. The initial condi-
tions were q(0) = q̇(0) = 02 and φ(0) = 02 was convention-
ally taken for both controllers for the sake of fairness. The
control gains for both tested schemes were adjusted so as
to get the best possible responses avoiding overshoot. In
the case of the proposed algorithm, this was done taking
care that inequalities (6) and (8) be fulfilled. For the S10
controller, no acceptable closed-loop trajectories could be
obtained through the tuning conditions reported in (Su
et al., 2010), so in order to get the best possible responses
such tuning conditions were disregarded except for the sat-
uration avoidance inequalities. The resulting tuning values
were: KP = diag[7000, 450] Nm/rad, KD = diag[150, 15]
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Fig. 1. Position errors
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Fig. 2. Control signals

Nms/rad, KI = diag[1500, 500] Nm/rad and ε = 7.03 ×
10−5 s−1 for the proposed SPD-SI scheme, and KP =
diag[10, 5] Nm, KD = diag[8, 1] Nm, KI = diag[130, 8.5]
Nm and η = 0.9 s/rad for the S10 controller.

Figs. 1 and 2 show the position errors and control signals
experimentally obtained. Note that while both controllers
accomplished the regulation objective avoiding input sat-
uration, the stabilization time achieved through the pro-
posed scheme is considerably shorter than that of the S10
controller. The structural and tuning characteristics of the
tested algorithms are concluded to state notorious differ-
ences on the consequent system responses in an authentic
global regulation framework.

6. CONCLUSIONS

A bounded PID-type global regulator for robot manip-
ulators with constrained inputs was presented. Its SPD-
SI structure, constructed through generalized saturation
functions, has proven to generate control signals that make
a better use of the available input range than analog
(PID-type) controllers with different structural features.
Furthermore, its very simple control-gain tuning criterion,
the simplest hitherto obtained in the considered analytical
framework, has proven to notoriously simplify the imple-

mentability of the algorithm and considerably enhance its
regulation authority in the search for closed-loop perfor-
mance improvements. Experimental tests corroborated the
analytical results.
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