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Abstract: In this paper a new mathematical model of the glucose-insulin system is presented.
The proposed model represents Type 1 Diabetes Mellitus patients and seeks to give a suitable
model of the malfunction of the pancreas. Based on the classicminimal model, this new approach
takes into account the description of the glucose dynamic in the subcutaneous layer and a meal
disturbance term, together with an additional term that represents the insulin injections, which
make this proposal a more realistic approach. Virtual data from UVA/Padova T1DMS software
are used for first evaluations of the effectiveness of the proposed model.
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1. INTRODUCTION

Type 1 diabetes is a chronic illness where the cells in the
pancreas that make insulin are destroyed, and the body is
not longer able to produce insulin. Onset most often occurs
in childhood, but the disease can also develop in adults in
their late 30s and early 40s. Patients with type 1 diabetes
require lifelong insulin therapy. Most require two or more
injections of insulin daily, with doses adjusted based on
self-monitoring of glucose levels. This therapy replaces the
continuous insulin secretion, which should be provided by
the pancreas.

The body naturally tightly regulates blood glucose levels
in a tight range (70 − 110mg/dl or 3.9 − 6.04mmol/l
after overnight fast). If the glucose concentration level is
significantly out of this range, it is considered that the
person have a plasma glucose problem: hyperglycemia or
hypoglycemia. For better understanding of the metabolic
system and monitoring adequate of the glucose level,
medical and engineers researchers have developed several
models that can be found in the literature. Based on the
knowledge of the behavior of insulin secretion, different
control approaches via mathematical models to mimic it,
have been proposed. A technique has been developed in the
last four decades consisting of the use of an insulin pump
that provides continuous insulin administration, based on
information from self-monitoring of glucose levels.

The device consists in a control algorithm which manipu-
lates a pump that supplies insulin to the body when the
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glucose level is high, this level is monitoring via a subcu-
taneous sensor that gives the glucose values periodically.
The main aim of this system called artificial pancreas,
is to incorporate a closed loop technology to adjust au-
tonomously and permanently the insulin delivery avoiding
the dangerous situations, as blood glucose levels rise and
fall. The most critical part of this new approach lies in the
development of a feasible, robust and safe algorithm for
insulin delivery. Technological challenges are present due
to inevitable time delays between glucose level measure-
ment (subcutaneous via) and insulin actuation, as well as
should also be considered individual patient responses to
disturbances (meals, sport, moods, etc.).

Among the mathematical tools that have been developed
to represent the glucose-insulin system, we can find models
of ordinary differential equations (Bergman et al. (1981);
Parker et al. (1999)), delay differential equations (Bennett
and Gourley (2004)), partial differential equations (Kenner
(2001)), stochastic differential equations (De Vries and
Sherman (2000)) and integro-differential equations (Li et
al. (2006)). In like manner it is possible to find models
including artificial neural networks (ANNs) (Pérez-Gand́ıa
et al. (2010)), fuzzy logic (Campos-Delgado et al. (2006))
or expert systems approach (Chee et al. (2003)).

All these models are the subject of ongoing researches in
order to overcome challenges based on previous attempts
to control the system. For this, it is important to pay at-
tention on the following issues: model uncertainties, time-
varying and/or nonlinear phenomena, natural time delays,
actuator saturation, measurement noise, to finally consider
a real-time application (Sánchez-Pena et al. (2011)).
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As a result, different software packages have been de-
veloped from different types of mathematical models for
numerical analysis and simulations. Among the most pop-
ular it is possible find the UVa/Padova Type 1 Diabetes
Mellitus Metabolic Simulator (T1DM), which is used to
design and test treatment of in-silico subjects with type 1
diabetes and was developed by The Epsilon Group (Dalla
Man et al. (2006, 2007)). This software it is based on the
glucose-insulin dynamics in human subjects represented
by a model developed by Kovatchev et al. (2009), which
can also be used to test performance of control strategies.

As an alternative solution to these challenges, in the
physiological environment, compartmental models based
on ordinary differential equations are often employed. The
most widely used model is the so-called minimal model of
Bergman et al. (1981) (see Fig. 1), which was designed
for the interpretation of the glucose and insulin plasma
concentrations following the intravenous glucose tolerance
test (IVGTT). The purpose of this model is to provide a
description of the insulin/glucose dynamic in the simplest
way possible, using a minimum number of known or
identified parameters.

Fig. 1. Minimal model schematic.

In this work, it is proposed an extension of the minimum
model that takes into account three main characteristics
of the real system, which must be considered for successful
treatment of the T1DM disease. First, it is important
to consider that in reality all insulin-dependent diabetic
subjects live with a conventional or intensified insulin
therapy regimen; i.e., insulin is injected subcutaneously
repeatedly by day and the dose is adjusted based on glu-
cose concentration measurements continuously monitored
by an implanted glucose sensors (Bellazzi et al. (2001)).
Considering this, a description of the glucose level in the
subcutaneous layer is considered in the proposed model,
i.e., with an additional dynamic equation it is possible take
into account the time delay in absorption by subcutaneous
route in a simplest form.

Second, the ingested food, directly impacts blood glucose
level. Furthermore, the glucose level is a variable difficult
to control because the quantity and the timing of the meals
are unknown. With this intention, this model includes a
term to describe the meals as a disturbance that helps to
improve the glucose dynamic representation.

Third, in order to establish a suitable insulin therapy,
a term that represents the insulin dose considering its

type is included on the proposed model (see Fig. 2).
Pharmaceutical research has produced various types of
insulin to mimic the appearance of insulin in plasma
occurring in a normal individual. These insulin types
ranging from short to long acting, then the insulin is
classified according to how long it works in the body.
Consequently, considering these aspects, our model gives
an approach more realistic that facilitates the future
control strategies implementation in real-time. Finally in
this paper, we use a scenario designed for an adult in-
silico-patient via UVa/Padova T1DMmetabolic simulator,
in order to validate our proposed model.

Fig. 2. Time course of plasma insulin concentration after
a subcutaneous injection (10 U) of different types of
insulin.

This paper is organized as follows: the minimal model and
their basic properties are presented in Section 2. Section
3 contains the proposed changes in order to obtain a
simple model but more complete, compared to the minimal
model of Bergman et al. (1981). In Section 4, simulations
to identify the parameters and validate the proposed
model are presented and discussed. Section 5 provides the
conclusions of present work.

2. MINIMAL MODEL

The authors in Bergman et al. (1981), from analysis of the
complex dynamic relationship between plasma glucose and
insulin, have concluded that the resulting data can be de-
scribed as a stimulus-response model of the extra pancre-
atic tissues that utilize glucose, giving rise to the minimal
model. This model has become in the tool currently most
used in physiological research on the metabolism of glucose
and the insulin regulation, in a normal person (without
T1DM). Such model it is considered simple enough to mea-
sured glucose, however makes possible, using mathematical
techniques, to estimate all the characteristic parameters of
the model from a single data set (Bergman (2006)).

Minimal model involves two physiological compartments: a
glucose compartment and a plasma insulin compartment,
which is assumed acting through a remote form to influ-
ence net glucose uptake. The first is represented by Eqs.
(1-2) describing the glucose plasma concentration, and the
second by Eq. (3) that describes the time course of plasma
insulin concentration. These equations are given as follows:

dG(t)

dt
= −(p1 +X(t))G(t) + p1Gb (1)

dX(t)

dt
= −p2X(t) + p3(I(t)− Ib) (2)
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dI(t)

dt
= −nI(t) + γ(G(t)− h)+t (3)

where G is the blood glucose concentration (mg/dL), X is
the effect of active insulin (min−1), I is the plasma insulin
concentration (mU/L), Gb and Ib are the basal values
of glucose and insulin concentration, p1 is the glucose
clearance rate independent of insulin (min−1), p2 is the
rate of clearance of active insulin (min−1) and p3 increase
in uptake ability caused by insulin ((µU/mL)−1min−2),
n is the fractional disappearance rate of insulin (mU/L),
γ is the rate of pancreatic release after glucose bolus
( mU∗dL
L∗mg∗min

), h is the the target glucose level (mg/dL) and

t represents the time interval from the glucose injection
(min).

The function given by Eq. (3) was first presented by
Bergman et al. (1981) and adjusted by De Gaetano and
Arino (2000). Only the positive part of the term (G(t) −
h) is taken, otherwise the value is zero. Therefore h is
considered a threshold level to decide when the pancreas
should produce more insulin and when to stop, finally
the difference between G(t) − h determines how much it
should be produced. The effect to multiply by t is because
the pancreas response, is proportional not only to the
hyperglycemia attained but also to the time elapsed from
the glucose stimulus.

Fig. 3. Blood glucose level using the identified parameters
for minimal model for a normal individual.

Fig. 4. Blood insulin level using the identified parameters
for minimal model for a normal individual.

This model is useful to represent a normal individual,
because describes the pancreas as the source of insulin.
In a healthy person a small amount of insulin is always
created or cleared. This helps to keep the insulin basal
concentration Ib. If the insulin level is above basal concen-
tration the clearance increases, if the insulin level is below
basal concentration the basal production increases.

2.1 Parameter identification

In order to validate the minimal model, the authors Pacini
and Bergman (1986) have provided the FSIGT test data
(see Table 1) that describe glucose and insulin measure-
ments that were taken during three hours from a nor-
mal individual. Based on these data, numerical simula-
tions have been implemented in MATLAB to estimate
the parameters (p1, p2, p3) via the Levenberg-Marquardt
algorithm, which is a standard technique used to solve
nonlinear least squares problems.

Let ẋ = f(p) be the parameterized model function.
The minimization starts after an initial guess for the
parameters when vector p is provided. The algorithm is
locally convergent; namely, it converges when the initial
guess is close to the true values. In each iteration step, the
parameter vector p is updated by a new estimate p + εp
where εp is a small correction term that can be determined
by a Taylor Series expansion which leads to the following
approximation:

f(p+ εp) ≃ f(p) + Jεp (4)

where J = ∂f(p)
∂p

is the Jacobian of f at p. Levenberg-

Marquardt iterative initiates at the starting point p0
and produces a series of vectors p1, p2, p3, that converge
towards a local minimizer p+ of f . At each step, it
is required to find the small correction factor ε which
minimizes the value of:

‖ x− f(p+ εp) ‖ ≃ ‖ x− f(p)− Jεp ‖ (5)

That gives the following:

‖ x− f(p+ εp) ‖≃‖ x− ẋ− Jδp ‖=‖ e− Jεp ‖ (6)

where εp is the solution to a linear least squares problem.
The process iterates until a value of εp that reduces error
is found (see Hariri and Wang (2011) for more details).

Via the Optimization Toolbox of MATLAB, a function
called Lsqnonlin is used to solve this algorithm and the
parameters can be estimated with lower and/or upper
bounds. The values of the parameters found minimize the
difference between the measured time course of plasma glu-
cose and the parameter-dependent solution to the glucose
minimal model from Eqs. (1-3). Figs. 3-4 shown the glucose
and insulin levels of both experimental data (see Pacini
and Bergman (1986)) and simulated data for a normal
individual.

3. MINIMAL MODEL AUGMENTED

However, to use the minimal model for a diabetic patient
Type 1 it is necessary to consider some additional terms,
which are variables and functions that should be added in
order to contribute with the design of a complete model
that can be used in closed- or partially closed-loop strate-
gies of insulin control.

The aim in this section is to present an augmented model
to be used to represent human diabetic patients with Type
1 diabetes.
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Table 1. G(t) and I(t) levels of a normal
individual

Time (min) Glucose (mg/dL) Insulin (mU/L)

1 92 11
2 350 26
4 287 130
6 251 85
8 240 51
10 216 49
12 211 45
14 205 41
16 196 35
19 192 30
22 172 30
27 163 27
32 142 30
42 124 22
52 105 15
62 92 15
72 84 11
82 77 10
92 82 8
102 81 11
122 82 7
142 82 8
162 85 8
182 90 7

3.1 Include a meal disturbance

It is possible to increase the functionality of the glucose
minimal model by additions of functions describing the
patient conditions. The first of these additions corresponds
to meals that directly impacts on blood glucose levels. This
is done by adding a meal disturbance term D(t) into Eq.
(1). To represent a person in a diabetic state, the original
minimal model is described by the following differential
equations:

dG

dt
= −p1G−X(G−Gb) +D(t) (7)

dX

dt
= −p2X + p3(I − Ib) (8)

where D(t) is the meal disturbance and can be represented
by a function as follows:

D(t) =
Rabs

mBWVG

(9)

where Rabs is the rate of absorption of exogenous glucose
(mg/min) and is scaled by the glucose distribution volume
VG and for the body weight mBW . Eq. (9) is adapted
to change basal blood glucose concentrations according
to body mass, i.e., the model is adapted to each patient
(Lunze et al. (2012)).

The description of process of exogenous glucose (meals)
absorption was suggested by Fisher (1991). The author
points that the glucose absorption description should be a
function which rapidly increases after the meal, and then
decays to 0 in 2-3 hours, as follows:

Rabs(t) = B · e(θ·t) (10)

where B represents the carbohydrates quantity ingested
(grams) and θ = 0.05 is a constant suggested by Fisher
(1991).

3.2 Include a exogenous insulin infusion

Similarly, on insulin model (Eq. (3)) a function UI(t)
representing the exogenous insulin infusion instead of
[σ(G(t)− h)t], it is added as follows:

dI

dt
= −n(I − Ib) + UI(t) (11)

where UI(t) can be modeled as the rate of insulin absorp-
tion after a subcutaneous insulin injection according to
authors in Berger and Rodbard (1989), as follows:

UI(t) =
sit

siT si
50DI

t[T si
50 + tsi ]2VI

(12)

where t is the time elapsed from the injection (ts means t
raised to the power si), T50 is the time at which 50% of the
insulin dose DI has been absorbed and si is a parameter
which defines the insulin absorption pattern depending of
types of insulin (regular, intermediate, slow, etc.),. VI is
the distribution volume of insulin in blood that should be
estimated. The linear dependency of T50 on dose is defined
by:

T50 = aiDI + bi (13)

where ai and bi are preparation-specific parameters the
values of which are given in Berger and Rodbard (1989)
along with values for si.

3.3 Glucose level in the subcutaneous layer

In order to obtain a useful model according to the non-
invasive monitoring techniques, the description of the
glucose level in the subcutaneous layer is considered in
this work. A patient with T1DM, usually test their blood
glucose frequently (3 to 10 times per day), both to assess
the effectiveness of their prior insulin dose and to help
determine their next insulin dose. For this reason, it is
easier to do the blood glucose concentration monitoring
through the subcutaneous layer measurements and not via
intravenous.

For this purpose, Gsc(t) is introduced, which describes the
glucose concentration in the subcutaneous layer via the
following dynamic function:

dGsc

dt
=

G(t)−Gsc

5
−Rutl (14)

where the initial condition is defined as Gsc(0) = (G(0)−
5)Rutl. This equation represents a first-order delay (5
minutes) between the blood glucose concentration and the
subcutaneous glucose concentration measurements. The
Rutl, is the rate of utilization, which is the difference
between the two concentrations in steady state Fisher
(1991). One of the major problems concerning automatic
control of glucose level is the proper estimation of this
delay.

4. RESULTS

Numerical simulations are presented in order to show
how the proposed model can describe the meals and
insulin injection effects and the delay of subcutaneous
layer, into the glucose-insulin system. For this, the data
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of an adult diabetic patient are used via the UVa/Padova
T1DM metabolic simulator. One day scenario (24 hours)
is designed using the realistic computer data derived from
clinical trials reflecting the body metabolism for a patient
with Type 1 Diabetes Mellitus.

Via the GUI scenario creator, parameters corresponding to
one day scenario is designed with 3 potential meals: break-
fast, lunch and dinner with associated boluses in insulin
Units. The timing of the meals is fixed at 7a.m., 12p.m.
and 6p.m. and the length of simulation is automatically set
to 24 hours. The meal amount in grams is fixed at 45g, 70g
and 80g of carbohydrates each one and insulin injections
exogenous of 3U , 4.7U and 5.3U respectively.

The constant parameters p1, p2, p3 are estimated via
the Levenberg-Marquadt algorithm. The body weight
102.32kg, the basal values Gb = 138.56mg/dL and
Ib = 100.25U/hr, and volumes Vg = 1.9152dL/kg,
VI = 0.0549L/kg are supplied by the UVa/Padova T1DM
metabolic simulator.

Fig. 5. Blood and subcutaneous glucose level using the
minimal model augmented.

Fig. 5 shows that glucose level rises from basal value, it
can be seen the increase of glucose levels in each meal
and return it to basal glucose level three hours after
approximately. With the modified model using the UI(t)
function with insulin regular type it is possible to see how
the model reacts to exogenous insulin injections. With this
in mind, it is assumed that the three insulin doses were
injected at the meal times. The larger the dose of regular
insulin, the faster the onset of action, but the longer the
time to peak effect and the longer the duration of the
effect.

The proposed augmented minimal model gives a good ap-
proximate estimation of G(t) (see red line) compared with
that obtained from the UVa/Padova T1DM metabolic
simulator (see blue line), using the same adult subject
data, and correlation was satisfactory. Importantly, the
UVa/Padova T1DM software uses a complex model with
more than 10 differential equations, and a lot of param-
eters are taken into consideration. So, for this reason, in
the Fig. 5 can be seen that the blue line represents a more
accurate estimation of the blood glucose level behavior.
Instead the proposed model, keeps the simplicity of the
minimal model with some additional parameters, which
are considered indispensable to customize it to each pa-
tient and make it more suitable for the development of
observation and control strategies. The dotted black line
represents the subcutaneous glucose level, that can be seen
as more approximate estimation to real glucose level.

Fig. 6. Zoom of blood and subcutaneous glucose level at
first meal disturbance (7 a.m.).

In addition, a zoom (Fig. 6) shows the delay between
two models (15 min approx. between blog glucose level
and software data), due to that the proposed model
approximates the time differences in the dynamics of blood
glucose and subcutaneous glucose. This difference should
be analyzed to consider its effect on the insulin treatment
represented by a closed loop control. It is expected that
this offset will be compensated in the estimation step
(via state observers) and / or control step, which will be
presented on future publications.

Additionally can be seen that the deviation from basal
value depends on the quantity of carbohydrate presents in
the meals. The speed of clearance of glucose also depends
of values of estimated parameters, i.e., if p1 have a lower
value, slows the decay.

The figures showed that the meal disturbance is an ex-
ternal variable that causes important deviations from the
normal glucose level. In the real system, this perturbation
is considered as a completely unknown and individual,
which should be detected and its size should be estimate
with the intention of calculate the adequate insulin dose.

5. CONCLUSIONS

The Bergman’s model is considered to be the simplest and
has been usually used to identify important issues in sys-
tems biology as they relate to carbohydrate metabolism.
For this reason, in this paper, new functions were included
based on the minimal model in order to obtain a represen-
tation more realistic of metabolism of T1DM patients.

These additional functions represent unmeasurable meal
disturbances, the insulin type and delays for glucose sub-
cutaneous measurements. As has been noted, in trying
to represent such conditions several complex models have
been developed. Therefore in this work, an alternative that
seeks to obtain an more realistic and simplest model taking
into account these issues is presented.

In essence, a function to represent the meals disturbance
scaled by weight body, was aggregated. This function al-
lows personalize the model to each T1DM patient, and
at the same time monitor the direct impact of meals in
the glucose level for each one. In like manner, the type of
insulin in a subcutaneous injection dose was considered in
the proposed model, which enabled to establish an insulin
therapy adequate to each individual. Finally, an additional
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dynamic equation representing the subcutaneous glucose
level was taken into consideration. This equation repre-
sents the subcutaneous layer glucose level, which is a way
more easy to monitoring instead via intravenous, that is
an invasive techniques requiring medical supervision.

To summarize, the additional functions turn the proposed
model into an interesting tool, because gives an approx-
imate representation of human body behavior, which is
one of the greatest issues in the diabetes treatment. As a
result, the model extended will collaborate to development
of monitoring and control strategies under those circum-
stances (meal disturbance, subcutaneous layer monitoring
and insulin injections), which contributes and promotes to
research of the artificial pancreas.

Our results indicate that the minimal model augmented
proposed, provides a good approximate estimation of the
glucose level compared with data from clinical trials for an
adult patient provided by UVa/Padova T1DM metabolic
simulator. Thus, this minimal model augmented can be
presented as a candidate model, which is simple, cost-
effective, and reliable tool to measure the glucose level
from subcutaneous glucose tests without employing com-
plex invasive devices.
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