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Abstract: In this paper it is proposed a novel nonlinear controller for underactuated mechanical
systems with external perturbations in the unactuated joint. The control objective is to regulate
the unactuated variable while the position of the actuated joint remain bounded and its velocity
asymptotically decays to zero. The control input is given by terms depending on the positions
and velocities of each joint. The closed loop system through simulations show the convergence of
the position of the unactuated joint to an equilibrium point which is zero, and it is robust with
respect to some uncertainty in the amplitude of the external perturbation of the unactuated
joint. Performance issues of the proposed synthesis are illustrated numerically.
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1. INTRODUCTION

Control synthesis for underactuated systems is more com-
plex than for fully actuated systems Seto and Baillieul
(1994). A few representative papers analyzing some prob-
lems about underactuated systems include the study of
accessibility Reyhanoglu et al. (1999), stabilization of equi-
libria through passivity techniques Ortega et al. (2002) and
energy shaping Bloch et al. (2000), stabilization and track-
ing via backstepping control Seto and Baillieul (1994), the
use of virtual constraints to produce stable oscillations
Shiriaev et al. (2005), path planning Bullo and Lynch
(2001), and control of mechanical systems with an unac-
tuated cyclic variable Grizzle et al. (2005), among others.

In the field of underactuated mechanical control several
papers have addressed the problem of friction. Linear
damping (viscous friction) in both, the unactuated and
the actuated joints is considered in Gómez-Estern and
Van der Schaft (2004); Woolsey et al. (2001, 2004). Com-
monly external perturbations on the unactuated joint has
been repeatedly left unmatched. A work considering dis-
continuous friction in the unactuated joint can be found
in Martinez and Alvarez (2008) where it is presented a
dynamic sliding mode controller to regulate the position of
the unactuated joint in 2-DOF underactuated mechanical.

Among other the previous works related to sliding modes
are Xu and mit zgner (2008), where a sliding mode control
approach is proposed to stabilize a class of underactu-
ated systems which are in cascaded form. In Sankara-
narayanan and Mahindrakar (2009) it is presented a sliding
mode control algorithm to robustly stabilize a class of
underactuated mechanical systems that are not linearly

controllable and violate Brockett’s necessary condition
for smooth asymptotic stabilization of the equilibrium,
with parametric uncertainties. Moreover in Martinez et al.
(2008) an hybrid control synthesis is proposed for a class
of 2-degrees-of-freedom (DOF) underactuated mechanical
systems with Coulomb friction in the joints.

More recently in Rascón et al. (2012) it is addressed
the position regulation of an underactuated mechanical
system with an elastic clearance, using a sliding mode-H∞
control technique, where the position of the underactuated
joint remain bounded around the equilibria due to model
uncertainties and disturbances.

For underactuated mechanical systems with a matched
disturbance, the problem of compensation, in some cases,
can be solved as in Riachy et al. (2006) where a quasi-
homogeneous switched controller is proposed.

In this paper, it is proposed a controller for a 2-DOF
underactuated mechanical system with external pertur-
bations in the unactuated joint. The control objective
is the regulation of the unactuated variable while the
position of the actuated joint remain bounded and its
velocity converges asymptotically to zero. The only way
of influencing the unactuated joint is via the position and
the velocity of the actuated one. we propose a sliding mode
control that guarantees a zero steady state position error
of the underactuated joint. we numerically evaluate the
performance of this procedure.

The rest of the paper is outlined as follows: In Section II,
we describe the 2-DOF underactuated mechanical system
and the control objective. In Section III it is design a
controller using the classic technique of sliding modes.
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Section IV proves the stability convergence to the sliding
surface in finite time. Section V address an application for
a mass-spring-damper system using the aforementioned
controller design. In Section VI a numerical study is
perform using MATLABr. Finally, Section VII includes
a conclusion and future work about the present control
approach.

2. STATEMENT OF THE PROBLEM

Consider an underactuated mechanical system represented
by

q̈1 = f0(q1, q̇1, q2, q̇2) + g0(q1, q̇1, q2, q̇2)u,

q̈2 = f1(q2, q̇2) + g1q1 + g2q̇1 + w
(1)

where q1 ∈ IR, q2 ∈ IR, f0, g0 are smooth functions,
g0 ̸= 0, f1 is a linear function and the control input is
given by u. To account for discrepancies in the model, has
been introduced an external perturbation satisfying the
following upper bounds, |w| ≤ D0, |ẇ| ≤ D1.

The objective is to design a control law u that allows the
regulation of the underactuated variable to the equilibrium
point which is zero, while the position of the actuated joint
remain bounded and its velocity decays asymptotically to
zero.

3. CONTROLLER DESIGN

The control u can be designed using the classic technique
of sliding modes. The sliding surface s proposed is given
by

s =
{

(q1, q̇1, q2, q̇2) ∈ IR4
∣∣∣

s = q̈2 + kpq2 + kdq̇2 + q̇1 = 0
}
.

(2)

The derivative along the trajectories of (1) is given by

ṡ =
∂

∂q2
f1(q2, q̇2) +

∂

∂q̇2
f(q2, q̇2) + g1q̇1 + kpq̇2 + kdq̈2

+(1 + g2)q̈1 + ẇ
(3)

which has an upper bound given as

ṡ ≤ ∂

∂q2
f1(q2, q̇2) +

∂

∂q̇2
f(q2, q̇2) + g1q̇1 + kpq̇2 + kdq̈2

+(1 + g2)q̈1 +D1.
(4)

Due to stability purposes that will be clear later, it is
desirable that (4) takes the following form,

ṡ = −βsign(s). (5)

One controller capable to fulfill the dynamics from (4)-(5)
is given as follows

u = g−1
0

[
−f0(q1, q̇1, q2, q̇2) + (1 + g2)

−1τ
]
, (6)

where τ is given by

τ = − ∂

∂q2
f1(q2, q̇2)−

∂

∂q̇2
f1(q2, q̇2)− g1q̇1 − kpq̇2

−kd (f1(q2, q̇2) + g1q1 + g2q̇1 + βsign(s)) ,

(7)

and β ∈ IR is the gain of the discontinuous term, which
purpose will be evident in the stability analysis.

4. STABILITY ANALYSIS

Now, we ensure the existence of sliding modes by verifying
sṡ < 0 and taking ṡ from (4). To this end, note that the
discontinuous friction amplitude is bounded by an upper
bound M then

sṡ = s (kdw − kdβsign(s) + ẇ)

≤ −kdβ|s|+ (kdD0 +D1) s

≤ −kd

(
β −

(
D0 +

D1

kd

))
|s|.

(8)

Can be concluded the existence of sliding modes on the
sliding surface s while the condition β > D0 + D1/kd be
satisfied. This gives a guide to tune the parameter β of
the controller (6)-(7). In fact, we can demonstrate that
the trajectories reach the surface s = 0, in finite time,
using the quadratic function

V (s) = s2, (9)

whose time derivative throughout the solutions of (1),
satisfied

V̇ (s(t)) = −2kd (β − (D0 +D1/kd)) |s|

= −2kd (β − (D0 +D1/kd))
√

V (s(t)),
(10)

given an initial condition V (t0) = V0 and while satisfying
β > D0 + D1/kd, it can be guarantee the existence of a
time tf such for all t > tf , the function V (t) goes to zero.
This time can be calculated directly from (10), where

V (t) = 0, for t ≥ t0 +

√
V0

kd(β − (D0 +D1/kd))
= tf .

(11)
thus, V (t) converges to zero in finite time and consequently
a motion occurs along the set s = 0 in the system (1) from
time tf . When the trajectories of (1) are on sliding mode
this is when s = ṡ = 0, the remain dynamics of the system
are given as follows

q̇1 = q̇1

q̈1 = (1 + g2)
−1

(
− ∂

∂q2
f1(q2, q̇2)−

∂

∂q̇2
f1(q2, q̇2)

−(g1 − kd)q̇1 − (kp − k2d)q̇2

+kpkdq2 − ẇ
)

q̇2 = q̇2

q̈2 = −q̇1 − kpq2 − kdq̇2

(12)

the stability proof of system (12) is under development
and will be published elsewhere.

5. APPLICATION

5.1 Example 1

Let us consider the system shown in Figure 1, described
by

m1q̈1 + kaq1 + kb(q1 − q2) + fb(q̇1 − q̇2) = u

m2q̈2 + kb(q2 − q1) + fb(q̇2 − q̇1) = w
(13)

where qi are the mass positions, q̇i the speeds, mi the
masses, for i = 1, 2; ka and kb are the spring stiffness,
fb stands for viscous friction of the damper, and the
control input is given by u. To account for discrepancies
in the model, a external perturbation is considered, with
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Fig. 1. A mass-spring-damper system

an amplitude level denoted as supt |w(t)| ≤ D0, D0 > 0,
and supt |ẇ(t)| ≤ D1, D1 > 0 which are assumed known a
priori.

For a zero force input u = 0 and zero perturbation w = 0,
the system (13) has the following equilibrium point q̄1 = 0
and q̄2 = 0.

The sliding surface s proposed is given by

s = q̈2 + kpq2 + kdq̇2 + q̇1. (14)

according to (6), u is designed as

u = kaq1 + kb(q1 − q2) + fb(q̇1 − q̇2) +
m1m2

fb +m2
τ, (15)

where τ is given by

τ =
kb
m2

(q̇2 − q̇1)− kpq̇2 +

(
kd −

fb
m2

)(
kb
m2

(q2 − q2)

+
fb
m2

(q̇2 − q̇1)−
β

m2
sign(s)

)
.

(16)
The derivative along the trajectories of (13) goes by

ṡ ≤ − kb
m2

(q̇2 − q̇1) + kpq̇2 +

(
kd −

fb
m2

)(
− kb
m2

(q2 − q1)

− fb
m2

(q̇2 − q̇1) +
w(t)

m2

)
+

(
fb
m2

+ 1

)
q̈1 +

ẇ(t)

m2
.

(17)
We ensure the existence of sliding modes by verifying
sṡ < 0

sṡ ≤ −
(

kd
m2

− fb
m2

2

)(
β −D0 −

(
m2

kdm2 − fb

)
D1

)
|s|.

(18)
can be concluded the existence of sliding modes on the

surface while the condition β > D0 +
(

m2

kdm2−fb

)
D1 be

satisfied. Moreover, we can demonstrate that the trajec-
tories reach the surface s = 0, in finite time, using the
quadratic function

V (s) = s2,

and compute its time derivative along the solutions of (13),

V̇ (s(t)) ≤ −2

(
kdm2 − fb

m2
2

)
×(

β −D0 −
(

m2

kdm2 − fb

)
D1

)√
V (s(t)).

(19)
From (19) it follows that

V (t) = 0 for

t ≥ t0 +

√
V (t0)(

kd

m2
− fb

m2
2

)(
β −D0 −

(
m2

kdm2−fb

)
D1

) = tf .

(20)
Hence, V (t) converges to zero in finite time and, in
consequence, a motion along the manifold s = 0 occurs
in the discontinuous system (13). Thus, in the following
development, we assume that system (13) is in sliding
mode; therefore, s = ṡ = 0 for t ≥ tf . We have that the
dynamics of system (13), once in sliding mode, are reduced
to

q̇1 = q̇1

q̈1 =
m2

fb +m2

(
∆1q̇1 +∆2q2 +∆3q̇2 −

ẇ

m2

)
q̇2 = q̇2

q̈2 = −q̇1 − kpq2 − kdq̇2

(21)

where

∆1 = − kb
m2

− fb
m2

+ kd

∆2 = −kpfb
m2

+ kpkd

∆3 = −kp + k2d −
fbkd
m2

+
kb
m2

.

(22)

Performance issues and robustness properties of the pro-
posed controller are additionally tested in numerical exper-
iments. In the simulations, performed with MATLABr,
the mechanical system (13) is studied with the parameters
shown in Table 1.

Table 1. Parameteres of the mass-spring-
damper system and controller.

Notation Description Value Units

m1 Mass 1 1 kg

m2 Mass 2 1 kg

ka Spring stiffness 1 N/m

w(t) External perturbation 0.1 sin(t) N

kb Spring stiffness 1 N/m

fb Damper coefficient 2 kg/s

β controller parameter 0.3 N

kp controller parameter 17 kg/s2

kd controller parameter 4 kg/s

0 5 10 15 20 25 30 35 40 45 50
−0.05

0

0.05

0.1

0.15

time [s]

q 1 [m
]

0 10 20 30 40 50
−0.02

0

0.02

time [s]

d/
dt

 q
1 [m

/s
]

Fig. 2. Mass position q1 and velocity q̇1.
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]

0 10 20 30 40 50
−0.02

0

0.02

0.04
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d/
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Fig. 3. Mass position q2 and velocity q̇2.
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−1

0

1
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s

0 10 20 30 40 50
−0.5

0

0.5

time [s]

u 
[N

]

Fig. 4. Sliding variable s and signal control u.

Fig. 5. A mass and beam system

5.2 Example 2

Consider now the mass and beam system shown in Figure
(5). This system is modeled by the equations

(J +mq22)q̈1 + 2mq2q̇1q̇2 −mgq2cos(q1) = u

q̈2 − q2q̇
2
1 − g sin(q1) + fv2q̇2 = w

(23)

where q1 is the beam (angular) position, q2 the mass
(linear) position, q̇1 and q̇2 the respective velocities, m the

mass, fv2 is the viscous friction level, w is the external per-
turbation which is considered bounded, J is the moment
of inertia of the beam, g the gravitational acceleration and
u the control input.

It is desired to obtain a control law u so that the mass m
will be regulated around the value [q1, q̇1, q2, q̇2]

T = 0T ∈
IR4

In order to apply the previous result, we must simplify this
model, assuming the beam angle and beam velocity are
small. Under this condition, system (23) can be simplified
to

(J +mq22)q̈1 + 2mq2q̇1q̇2 −mgq2 cos(q1) = u,

q̈2 − gq1 + fv q̇2 = w.
(24)

Let us set the control u as

u = 2mq2q̇1q̇2 −mgq2 cos(q1) + (J +mq22)τ (25)

where τ is given by

τ = −gq̇1−kpq̇2−(kd−fv2)(gq1−fv2q̇2+βsign(s)). (26)

The sliding surface stands by

s = q̈2 + kpq2 + kdq̇2 + q̇1. (27)

The derivative along the trajectories of (24) is given by

ṡ = ẇ + gq̇1 + kpq̇2 − (fv − kd)(w + gq1 − fv q̇2)

+

(
1

J +mq22

)
(u− 2mq2q̇1q̇2 +mgq2 cos(q1))

(28)

which in closed-loop can be reduced to

ṡ = −(kd − fv)

(
βsign(s)− w − ẇ

kd − fv

)
(29)

now, we ensure the existence of sliding modes by verifying
sṡ < 0 and taking ṡ from (27). To this end, note that the
external perturbation and its derivative are bounded by
upper bounds D0 and D1, respectively

sṡ ≤ −s (kd − fv)

(
βsign(s)−D0 −

D1

kd − fv

)
≤ −(kd − fv)

(
β −D0 −

D1

kd − fv

)
|s|.

(30)

Can be concluded the existence of sliding modes on the
sliding surface while the conditions kd > fv and β > D0 +
D1/(kd − fv) remain satisfied. This gives a guide to tune
the parameter β of the controller (25). In fact, we can
demonstrate that the trajectories reach the surface s = 0,
in finite time, using the quadratic function

V (s) = s2,

and compute its time derivative along the solutions of (24),

V̇ (s(t)) ≤ −2(kd − fv)

(
β −D0 −

D1

kd − fv

)√
V (s(t)).

(31)
From (31) it follows that

V (t) = 0 for

t ≥ t0 +

√
V (t0)

(kd − fv)
(
β −D0 − D1

kd−fv

) = tf .
(32)

Hence, V (t) converges to zero in finite time and, in
consequence, a motion along the manifold s = 0 occurs
in the discontinuous system (24). Notice that the reaching
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time can be reduced by increasing the value of parameter
β. Thus, in the following development, we assume that
system (24) is in sliding mode; therefore, s = ṡ = 0 for
t ≥ tf .

Now let us show that, while the system remains in s = 0,
from (25) and (27), we have that the dynamics of system
(24), once in sliding mode, are reduced to

q̇1 = q̇1

q̈1 = −ẇ − gq̇1 − kpq̇2 − (kd − fv)(w + gq1 − fv q̇2)

q̇2 = q̇2

q̈2 = −q̇1 − kpq2 − kdq̇2.

(33)

In the simulations, performed with MATLABr, the me-
chanical system (24) is studied with the parameters shown
in Table 2.

Table 2. Parameteres of the mass and beam
system and controller.

Notation Description Value Units

J Inertia 1 kg.m

m Mass 1 kg

g Gravity 9.82 m/s2

fv Viscous friction 1 kg/s

w(t) External perturbation 0.1 sin(t) N.m

β controller parameter 0.3 N.m

kp controller parameter 17 N

kd controller parameter 4 N.s

0 10 20 30 40 50
−0.05

0

0.05

0.1

0.15

time [s]

q 1 [m
]

0 10 20 30 40 50
−0.5

0

0.5

time [s]

d/
dt

 q
1 [m

/s
]

 

 

Fig. 6. Mass position q1 and velocity q̇1.

6. CONCLUSION AND FUTURE WORK

6.1 Conclusions

Underactuated mechanical systems with unmatched per-
turbations, have a problem when they compensate the
input to reach the equilibrium position. Taking this into
account, a sliding mode controller is proposed for a 2-DOF
underactuated mechanical system with external perturba-
tions in the unactuated joint. The control objective is to
regulate the unactuated variable to a reference position
while the position of the actuated joint remains bounded
and its velocity asymptotically decays to zero. The pro-
posed controller through simulations guarantees the con-
vergence of the unactuated variable to the equilibrium

0 10 20 30 40 50
−0.1

−0.05

0

time [s]

q 2 [m
]

0 10 20 30 40 50
−0.2

−0.1

0

0.1

0.2

time [s]

d/
dt

 q
2 [m

/s
]

Fig. 7. Mass position q2 and velocity q̇2.

0 10 20 30 40 50
−1

−0.5

0

0.5

time [s]

s

0 10 20 30 40 50
−2

−1

0

1

2

time [s]

u 
[N

]

Fig. 8. Sliding variable s and signal control u.

point. It is shown that the closed-loop system is robust
with respect to some uncertainty in the amplitude of the
external perturbation, being necessary just to know their
upper bound. The control is obtained using a sliding mode
technique. Some advantages of using this technique are
insensibility against disturbances and the choice of surface
s = 0, this allows us to choose a priori the closed-loop
dynamics. However, some disadvantages are the chatter-
ing phenomenon and that the trajectories are not robust
against uncertainties during the reaching phase. Numerical
simulations validate the proposed theoretical approach.
The use of MatLab to perform the simulations saves the
need to acquire an additional software to simulate, and
opens the possibility for other teams to advance or modify
the present work using resources available in their institu-
tion.

6.2 Future Work

Design a stability proof to guarantee asymptotic stability
when the trajectories are on the sliding surface, besides of
extend the present approach to underactuaded mechanical
systems with discontinuous friction. Design a method-
ology to validated experimentally the simulations done
in MatLab, in which an observer is needed for velocity
feedback and to estimate the upper bound of the external
perturbation.
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The so called phenomena of chattering can be reduced
using some afore proposed techniques as low-pass filtering
the control signal Tseng and Chen (2010), compensate the
uncertainties through the usage of a disturbance estimator
Yang et al. (2013), design a second order sliding mode
controller (SOSM) Bartolini et al. (1998), among others
techniques Cheng et al. (2011), Su et al. (2010), Lee et al.
(2004). Also the reaching time to the sliding surface can be
reduced using an exponential reaching law Fallaha et al.
(2011). Some of these techniques will be approach in future
works
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