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Abstract:
This paper addresses the design and implementation of the Extended Prediction Self-Adaptive
Control (EPSAC) approach to Model Predictive Control (MPC) for path-following. Special
attention is paid to the closed-loop performance in order to achieve a fast response without
overshoot, which are the necessary conditions to ensure the desired tracking performance in
confined or indoor environments. The performance of the proposed MPC strategy is compared
to the one achieved using PD controllers. Experimental results using the low-cost quadrotor
AR.Drone 2.0 validate the reliability of the proposed strategy for 2D and 3D movements.
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1. INTRODUCTION

In recent years, a big interest has emerged in the use of
Unmanned Aerial Vehicles (UAVs) on applications such as
aerial photogrammetry (Mokhtar et al. (2012)), agricul-
ture (Berni et al. (2009)), habitat mapping (Dijkshoorn
(2012)), and military tasks (Bednowitz et al. (2014)).
One type of aerial vehicle which can accomplish this, is
a quadrotor. The quadrotor is a micro UAV with four
rotating blades which enable flight in a way similar to that
of a helicopter. Movement is attained by varying the speeds
of each blade thereby creating different thrust forces.

In order to accomplish the above mentioned missions
without constant supervision of human operators, the
UAV must autonomously follow predefined paths in 2D
or 3D space. Usually, the problems of motion control for
a single autonomous vehicle are roughly classified into
three groups. Namely, point stabilization, where the goal
is to stabilize a vehicle about a given target point with a
desired orientation; trajectory tracking, where the vehicle
is required to track a time parametrized reference; and
path-following, where the quadrotor is required to follow
a desired geometric path, implying a constraint in space,
but not in time. Thus, the time it takes the quadrotor to
reach the target position does not matter here.

In the literature, several authors present studies about
path-following and reference tracking using UAVs. In
(Xargay et al. (2012)) a cooperative control strategy for
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path-following of multiple autonomous vehicles is pre-
sented. The stability and convergence of the control strat-
egy is addressed in Aguiar and Hespanha (2003) using
Lyapunov-based design techniques. A more recent work
(Alessandretti et al. (2013)) presents simulation results of
a MPC strategy applied to 2-D and to 3-D moving vehicles.

In this study, we propose the use and real-life implemen-
tation of the Extended Prediction Self-Adaptive Control
(EPSAC) approach to Model Predictive Control (MPC)
for path-following control, as a continuation of the authors’
previous work (Vlas et al. (2013)), where the first steps
towards identification and position control of an AR.Drone
2.0 was performed. This quadrotor available to the mass
market, was chosen thanks to its simple structure, suffi-
cient sensory equipment and ease of maintenance, at a very
low price. These features prove the quadrotor to be a good
subject for both study purposes and practical applications.
The quadrotor can fly both indoor and outdoor and is able
to perform aggressive aerial maneuvers and to establish
wireless communication to a ground station using Wi-Fi
(Bristeau et al. (2011)).

The performance of the proposed MPC-EPSAC strategy
for path-following is compared to the one achieved using
PD controllers, for the tuning specifications of fast tracking
without overshoot. In order to qualitatively compare the
performance, the tracking error is used as evaluation
criteria, using the well-known performance index ISE, IAE
and ITAE.

The paper is organized as follows: Section 2 presents the
model predictive control (MPC) architecture. In section
3 the AR.Drone 2.0 quadrotor is fully described. The
control design of the path-following strategies is presented
in section 4. Next in section 5 the experimental results are
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presented, followed by a conclusion section where the main
outcome of this work is summarized.

2. MODEL PREDICTIVE CONTROL

Model Predictive Control (MPC) is a general designation
for controllers that make an explicit use of a model of
the plant to obtain the control signal by minimizing an
objective function over a time horizon in the future. In this
contribution we will make use of the Extended Prediction
Self-Adaptive Control (EPSAC) approach to MPC. This
methodology proposed by (De Keyser (2003)) is briefly
described as follows:

In the EPSAC algorithm, the model output x(t) represents
the effect of the control input u(t) on the process output
y(t). It can be described by the following equation:

x(t) = f [x(t− 1), x(t− 2), . . . , u(t− 1), u(t− 2), . . .] (1)

Notice that x(t) represents here the model output, not the
state vector. Also important is the fact that f can be either
a linear or a nonlinear function. The generic model of the
EPSAC algorithm is:

y(t) = x(t) + n(t) (2)

where y(t) is the measured output of the process, x(t)
is the model output and n(t) represents model/process
disturbance, all at discrete-time index t. The disturbance
n(t) can be modeled as colored noise through a filter with
the transfer function

n(t) =
C(q−1)

D(q−1)
e(t) (3)

with e(t) uncorrelated (white) noise with zero-mean and
C, D monic polynomials in the backward shift operator
q−1. The disturbance model allows to achieve robustness
of the control loop against unmeasured disturbances and
model errors. A ‘default’ choice to remove steady-state
control offsets is n(t) = 1

1−q−1 e(t) (Maciejowski. (2002)).

A fundamental step in the MPC methodology is the pre-
diction. Using the generic process model (2), the predicted
values of the output are described by

y(t+ k|t) = x(t+ k|t) + n(t+ k|t)
for k = N1, N1 + 1, . . . , N2|N1, N2 ∈ <, where N1 and N2

are the minimum and the maximum prediction horizons.
The prediction of the process output is based on the mea-
surements available at the sampling instant t, {y(t), y(t−
1), . . . , u(t− 1), u(t− 2), . . .} and future (postulated) val-
ues of the input signal {u(t|t), u(t + 1|t), . . .}. The future
response can then be expressed as

y(t+ k|t) = ybase(t+ k|t) + yopt(t+ k|t) , (4)

where each of the contribution terms is understood as:

• ybase(t + k|t) is the effect of the past inputs u(t −
1), u(t−2) . . ., a future base control sequence ubase(t+
k|t) that can be the last used input and the predicted
disturbance n(t+ k|t).

• yopt(t + k|t) is the effect of the optimizing control
actions δu(t|t), . . . , δu(t+Nu−1|t) with δu(t+k|t) =
u(t+ k|t)− ubase(t+ k|t), in a control horizon Nu.

The optimized output yopt(k)∀ k = [1, 2, . . . , N2] can be
expressed as the discrete time convolution of the unit

impulse response coefficients h1, . . . , hN2 and unit step
response coefficients g1, . . . , gN2

of the system as.

yopt(t+ k|t) = hkδu(t|t) + hk−1δu(t+ 1|t) + . . .

+gk−Nu+1δu(t+Nu − 1|t) (5)

Using (4) and (5), the key EPSAC-MPC formulation
becomes

Y = Y + GU (6)

where

Y = [y(t+N1|t) . . . y(t+N2|t)]T

Y = [ybase(t+N1|t) . . . ybase(t+N2|t)]T

U = [δu(t|t) . . . δu(t+Nu − 1|t)]T

G =

 hN1
hN1−1 . . . gN1−Nu+1

hN1+1 hN1 . . . . . .
. . . . . . . . . . . .
hN2 hN2−1 . . . gN2−Nu+1

 (7)

Then, the control signal U is optimized by minimizing the
cost function:

J =

N2∑
k=N1

[r(t+ k|t)− y(t+ k|t)]2 (8)

Note that the controller cost function (8) can be easily
extended to many alternative cost functions (similar to the
approach in optimal control theory) as described in (De
Keyser (2003)). The horizons N1, N2 and Nu are design
parameters and

r(t+ k|t) = αr(t+ k − 1|t) + (1− α)w(t+ k|t)
is the desired reference trajectory, where a 1st-order tra-
jectory was chosen for k = 1, . . . , N2 with initialization
r(t|t) = y(t).The signal w(t) represents the setpoint and
alpha (α) is a design parameter to tune the MPC perfor-
mance (Sanchez and Rodellar. (1996)).

The cost function (8) can be represented in its compact
matrix notation as follows:

(R−Y)T(R−Y) = [(R−Y)−GU]T[(R−Y)−GU]

where R = [r(t+N1|t) . . . r(t+N2|t)]T .

The previous expression can be easily transformed into the
standard quadratic cost index:

J(U) = UTHU + 2fU + c. (9)

with,

H = GTG f = −GT(R−Y)

c = (R−Y)T(R−Y)
(10)

where [GTG] ∈ <Nu×Nu . The solution of minimizing (9)
is:

U∗ = [GTG]−1[GT(R−Y)] (11)

Finally, the feedback characteristic of MPC is given as the
first optimal control input u∗(t) = ubase(t|t) + δu(t|t) =
ubase(t|t)+U∗(1) is applied to the plant and then the whole
procedure is repeated again at the next sampling instant
t+ 1.
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3. UAV: THE AR.DRONE 2.0 QUADROTOR

3.1 Plant Description

The AR.Drone 2.0 is a commercial and low-cost micro
Unmanned Aerial Vehicle. The quadrotor comes with in-
ternal in-flight controllers and emergency features making
it stable and safe to fly (Bristeau et al. (2011)). The only
downside would be that access to the internal controller
of the quadrotor is restricted. The internal software is
black-box and the parameters that refer to control, motors
and other calibrations are undocumented. There are 4
brushless DC motors powered with 14.5 W each from the
3 element 1000 mA/H LiPo rechargeable battery which
gives an approximate flight autonomy of 10-15 minutes.
Two video cameras are mounted on the central hull. The
front camera resolution is 1280x720 and the bottom one is
640x360 with a video stream rate of 30 FPS and 60 FPS
for front and bottom cameras.

The sensors are located below the central hull and consist
of a 3-axis accelerometer, a 2-axis gyroscope and 1-axis
gyroscope which together form the Inertial Measurement
Unit (IMU). There is one ultrasonic sensor and one pres-
sure sensor for altitude estimation. A 3-axis magnetometer
gives the orientation of the quadrotor with respect to
the command station. Communication between quadro-
tor and command station is done via Wi-Fi connection
within a range of 30 m to 100 m for indoor and outdoor
environment, respectively. The AR.Drone creates a Wi-Fi
network, self-allocates a free IP address to grant access to
client devices that wish to connect. For more details about
internal structure of this quadrotor, check (Bristeau et al.
(2011)).

A C++ application in Visual Studio establishes access to
all AR.Drone communication channels, enabling functions
to send commands or set configurations and also receive
and store data from sensors and video stream. Thus,
data can be interpreted off- or on-line for the purpose of
identification, modeling and control of the quadrotor.

AR.Drone electronics execute an operative system to read
the sensors, manipulate the speed of the motors, and to
control the quadrotor in four degrees of freedom. We refer
to this black-box on-board system as the low layer. The
path-following controller located in the higher layer, sends
references to the low-layer internal controllers through
Wi-Fi communication. Figure 1 describes the two layers
structure which characterize the system.

Fig. 1. Quadrotor layers: The low layer represents the elec-
tronic assistance and the embedded operative system
on the AR.Drone, the high layer represents the pilot
(natively a smart device i.e iPhone)

Movement is achieved by giving reference values as input
to the internal, black-box controllers. The input and out-
put relations will be discussed in the following subsection.

3.2 Coordinates System

The quadrotor aerial movements are similar to those of a
conventional helicopter. The difference is that movement
is achieved by varying each of the motor speeds to obtain
the desired effect. Figure 2 depicts the movement axes of
the quadrotor. The 4 Degrees Of Freedom (DOF) of the
AR.Drone give attitude and position. Movements are thus
achieved on:
• Pitch - By rotational movement along transverse axis y,
translational movement on x axis is made.
• Roll - By rotational movement along longitudinal axis x,
translational movement on y axis is made.
• Yaw - Rotational movement along z axis.
• Throttle - Translational movement on z axis.

Fig. 2. Movement axes of the quadrotor in the space

3.3 Identified Dynamics

The control parameters given to the internal controllers
are floating point values between [-1,1] and represent the
percentage of the minimum or maximum configured value
for the respective movement. We denote {φ, θ, ż, ψ̇} the
roll angle reference value, pitch angle reference, vertical
speed reference and yaw angular speed reference. The roll,
pitch and yaw angles are given in radians, altitude in
meters and linear velocities on longitudinal and transverse
axes in m/s.

Due to the low layer internal control, the quadrotor be-
haves as a Linear Time-Invariant System. Making possible
to perform for each degree of freedom a parametric identifi-
cation using the prediction error method (Ljung (2007)). A
Pseudo-Random Binary Signal (PRBS) is used to identify
the dynamics of the quadrotor. A sampling time of 66 ms
is chosen based on the analysis of dynamics performed on
previous work (Vlas et al. (2013)). The obtained transfer
functions are given by:

Hx(s) =
x(s)

ux(s)
=

7.27

s(1.05s+ 1)

Hy(s) =
y(s)

uy(s)
=

7.27

s(1.05s+ 1)

Hz(s) =
z(s)

ż(s)
=

0.72

s(0.23s+ 1)

Hyaw(s) =
ψ(s)

ψ̇(s)
=

2.94

s(0.031s+ 1)

(12)
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4. CONTROL DESIGN

This section describes the path-following control strategy,
which corresponds to the position control located in the
higher layer. This controller will send the setpoints to
the black-box internal controller in the low-layer. It is
important to notice that due to this internal control, each
degree of freedom in the quadrotor behaves independently,
thus making possible to tune SISO controllers. The tuning
procedure for the two considered strategies (i.e. the MPC
and PD controllers) is described below.

4.1 MPC-EPSAC tuning

The MPC-EPSAC strategy is implemented in simulation
for all degrees of freedom. The main specification was to
achieve a fast response without overshoot. A combination
of long prediction horizon (N2) and short control horizon
(Nu) was also considered in order to introduce a higher
robustness in the controller (De Keyser (2003)). The tuned
EPSAC parameters are summarized in table 1.

Table 1. EPSAC controller parameters.

SISO System N1 N2 Nu α Noise Filter: C/D

x, y 1 15 1 0

z 1 30 1 0 1
1−q−1

yaw 1 10 1 0

4.2 PD tuning

The performance of the MPC strategy is compared to
the one achieved using PD controllers. In order for a PD
controller to be practically usable, its derivative action
must be filtered, given that a derivative action without
a filter can produce undesired noise-effects on the system.
The PD controller is represented in (13), where: N is the
derivative gain limit; usually an integer number.

C(s) = Kp +Kp
Tds

Td

N s+ 1
(13)

PD controllers with filter action (13) can be represented
as one gain, one zero and one pole (14); this compensator
can be designed with any CAD tool. In our case we
made use of the Frequency Response (FRTool) (De Keyser
and Ionescu (2006)) as it provides an intuitive graphical
interface based on the Nichols plot, to tune a compensator
based on design specifications such as: robustness, settling
time, phase margin and/or gain margin.

C(s) = Kp(N + 1)
s+ N

Td(N+1)

s+ N
Td

(14)

Once the controller is exported from FRTool in zpk form
(15):

C(s) = K
(s+ z1)

(s+ p1)
(15)

The PD parameters Kp,Td and N can be calculated by
defining a system of equations from (14) and (15).

K =Kp(N + 1)

z1 =
N

Td(N + 1)
(16)

p1 =
N

Td

At this point, the controller is still in the continuous-
time domain, therefore a discretization step is required.
Proportional action is the same in continuous time and
discrete time, however the derivative action have several
approximations, in this work the Tustin approximation is
considered.

FD(z) =
2NTd

2Td +NTs

1− z−1

1− 2Td−NTs

2Td+NTs
z−1

(17)

The digital form of the PD controller with filter and sample
period Ts is given in (18), representing an implementable
form of the PD controller.

C(z) =
u(z)

e(z)
= Kp +Kp

2NTd
2Td +NTs

1− z−1

1− 2Td−NTs

2Td+NTs
z−1

(18)

The design specifications: robustness (Ro), settling time
(Tset), overshoot percent (%OS) and gains of the tuned
PD controllers are presented in table 2.

Table 2. Design parameters for the PD con-
trollers

Controller Ro Tset %OS Kp Td N

x,y ≥ 0.7 ≤ 5 s ≤ 3% 0.15 0.96 1
z ≥ 0.7 ≤ 5 s ≤ 3% 1.6 0.46 1
ψ ≥ 0.7 ≤ 5 s ≤ 3% 1.52 0.08 1

4.3 Simulation Results

In this subsection a tracking experiment is performed
to test the capabilities of the controller to follow a set-
point. Special attention is paid to the settling time and
overshoot, as this will limit the control performance for
path-following. A faster controller allows to perform more
aggressive maneuvers, whilst a smaller overshoot allows to
more accurately follow the trajectory in confined spaces.

The performance of the combination of the controllers is
depicted in Fig. 3, where the quadrotor is requested to
follow four setpoints in the 3D space. The task consists
in sequentially following the waypoints, starting at point
0. The MPC-EPSAC is able to follow more accurately
the path without large deviations. In order to better
understand the performance of the controllers, each one
is analyzed separately.

For the case of orientation (Yaw) both controllers provide
a desired behavior without overshoot, although MPC-
EPSAC provides a faster response as observed in fig. 4. For
the case of altitude it was observed no difference between
the two control strategies (Fig. 5).

On the other hand for the case of translational movements
over X and Y axis, a more distinguishable difference in the
control performance of PD and MPC-EPSAC controllers
is observed. The MPC-EPSAC reacts faster and without
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Fig. 3. 3D response for path-following of the AR.Drone
2.0. The markers represent the sequential waypoints
for the quadrotor in the space.

Fig. 4. Results Yaw controller

Fig. 5. Results controllers in Z axis

overshoot compared to the PD controllers, although at
expenses of a slightly higher control effort as depicted in
Fig. 6 and Fig. 7.

5. EXPERIMENTAL RESULTS

In this section the experimental results obtained for the
proposed path-following control strategies are presented.
The experiment consisting in following a trajectory in the

Fig. 6. Results controller X axis

Fig. 7. Results controllers Y axis

two dimensional space is depicted in Fig. 8 for the case of
the PD controllers and in Fig. 9 for the case of the MPC.

In the case of the MPC-EPSAC path-following controller,
the quadrotor experiences less deviations to the desired
trajectory, specially at the moment of performing sharp
bends as in the middle of the trajectory. The performance
of the controllers is further compared using the well-known
performance index ISE, IAE, and ITAE; which are used in
this example to compute the error between the reference
and the real trajectory described by the quadrotor. As
expected the errors are less for the proposed MPC strategy
as summarized in table. 3.

Table 3. Performance index for Path-following
strategies

Controller ISE IAE ITAE

PD X 118.12 159.99 1862.7
EPSAC X 100.81 134.2 1279.6

PD Y 87.28 164.65 2360.5
EPSAC Y 68.89 131.68 1990.9

6. CONCLUSION

We have presented in this work the application of Model
Predictive path-following control using a low-cost com-
mercial quadrotor. The strategy presents a desired per-
formance as it is able to quickly follow the trajectory
with little or no overshoot (compared to PD controllers),
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Fig. 8. Results obtained for the PD controllers following a
trajectory in a two dimensional space.

Fig. 9. Results obtained for the EPSAC controllers follow-
ing a trajectory in a two dimensional space.

which makes it desired for the case of working in indoor
or confined environments.

Future work includes a better position estimation (e.g.
Kalman filter) and the implementation of multiple UAVs
in a formation control structure.
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