
Maglev Tracking Control by a

State-Feedback with Integral Action and

Robust Velocity Reconstruction

Guerrero Tejada, Cuauthémoc ∗
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(e-mail:jadavila@ipn.mx)
∗∗∗∗ Universidad Autónoma de la Ciudad de México, Colegio de
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Abstract: In this work we present a design of a LQR control for a magnetic levitator system
with integral term and full-state feedback with robust exact reconstruction of the velocity for
regulation and tracking, considering external perturbations and non-modeled dynamics, as well
as noisy measurements. Simulation and experimental results are presented in order to show the
effectiveness of the presented scheme.

Keywords: Optimal control, Robust Exact Differentiatior, Maglev System, State-Feedback.

1. INTRODUCTION

The magnetic levitation system has been a widely used
benchmark model prototype due to its unstable nature
and therefore the challenging control design it represents,
analyzed on both its nonlinear model and linear approx-
imations, as indicated in Ollervides et al. (2005); Zhao
et al. (1999), that even lead to more complex applications
(Sinha and Pechev, 1999). The model typically consists on
a metallic ball that is levitated by the magnetic flux gen-
erated by a coil that compensates the gravitational force,
and usually three variables are considered: the position of
the ball to the coil core face, its velocity and the electric
current. Due to the nonlinearities inherent to the system,
the noise in the data measurement and the instability
of the equilibrium point the velocity measurement, the
parameter uncertainties as well as the calculation of the
derivative term in the proposed PID controls are some of
the challenges that need to be overcame in a control design.

Several control strategies have been proposed in the liter-
ature, and generally some experimental challenges are in
order, as only some variables, usually the ball position and
the electric current are easily measured. Some approaches
consider a Proportional-Integral-Derivative (PID), under
the assumption of an exact knowledge of the parameters
of the system, as well as state-feedback using a linearized
model around an equilibrium point, as those reported by
Barie and Chiasson (1996) and Ahmad and Javaid (2010),
where an observer is used to reconstruct the velocity and
compare it with a nonlinear state-feedback. Other works,

such as the one reported by Morales et al. (2011), proposes
a Generalized Proportional-Integral (GPI) controller plus
an online parameter identification; however, the electric
dynamics are neglected and simplified into an algebraic
relation.

Other approach is given by Ortega (1998), where a
passivity-based control is proposed considering the electric
dynamics, taking into account that also the inductance
of the electromagnet changes due to the position of the
ball, leading to a more accurate model. However, as the
current could lead to a singularity in the control scheme,
it is changed so that it depends instead on the magnetic
flux, and eventually only depending on the ball position,
but depending on a knowledge of the system parameters.
To deal with the parameter uncertainties, a backstepping
technique has been proposed (Huang et al. (2000)), adap-
tive feedback and a nonlinear damping term (Yang and
Tateishi (2001)), or sliding mode control (Al-Muthairi and
Zribi (2004)).

However, the problem of speed reconstruction in electro-
mechanical systems is a challenge that may limit the cor-
rect application of control techniques. Either by their lack
of robustness, the existence of the picking phenomena or by
their asymptotic convergence, some standard techniques
cannot be effectively applied to solve the problem.

To overcome this limitation, high-gain differentiators
(Atassi and Khalil (2000)) have been proposed to recon-
struct the derivatives on signals and/or states, and are not
exact with any fixed finite gain and feature the peaking
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effect with high-gains. The maximal output value during
the transient grows infinitely as the gains tend to infinity
(see, for example, Barbot et al. (2002), Poznyak (2003)
and Xian et al. (2004)). Finite-time convergent techniques
such as the first-order robust exact differentiator (Levant
(1998)) can be used here, but its successive application is
cumbersome and not effective.

The arbitrary-order robust exact sliding-mode-based dif-
ferentiator (Levant (2003)) provides for the rth deriva-
tive accuracy proportional to the discretization step, and
provides for the accuracy ε1/(r+1). Its straight-forward
application requires the boundedness of the rth order
derivative. In practice it means that velocities and/or ac-
celerations should be bounded. As it is easy to understand,
these restrictions are always satisfied in electro-mechanical
systems.

In this work, in order to deal with the problem of the
reconstruction of the velocity required in an usual state-
space linear feedback control, we present a linear optimal
control design to control the position of the maglev ball
using the current and position measurements. We pro-
pose to reconstruct the velocity from robust sliding-mode
based differentiator and an integral term to compensate
the tracking error as well as the parameter and model
uncertainties and non-modeled dynamics, with simulated
and experimental results.

2. MAGNETIC LEVITATOR MODEL

The maglev system is shown in Fig. 1, where Vc(t) is
the control input to the coil, ic(t) its electric current, Lc

its inductance, Rc its resistance, Rs the current sensor
resistance and m the ball mass.

Fig. 1. Schematic diagram of the maglev system, taken
from the Quanser User Manual

Applying Kirchhoff’s Voltage Law, we obtain

Vc(t) = Ric(t) + Lc
d

dt
ic(t) (1)

where R = Rc + Rs. The magnetic force of attraction
from the coil to the ball is given by the approximation

Fm = 1
2
Kmi2c
z2 , where z is the ball position measured

from the coil’s face and Km depends on the magnetic

properties and geometry of the ball. This leads to the force
equilibrium equation:

mz̈ = −1

2

Kmi2c
z2

+mg (2)

where g the acceleration due to gravity. This leads to the
nonlinear approximated model:

ẋ =











−R

L
x1 +

1

Lc
Vc(t)

x3

g − Km

m

(

x1

x2

)2











(3)

where x = [ic(t) z(t) ż(t)]
T
is the state vector.

2.1 Linearized model

The equilibrium point of the system is given by

−1

2

KmI2eq

Z2
eq

+mg = 0 (4)

where Zeq and Ieq are the position and the electric current
at the equilibrium, parameterized as:

Ieq =
√
2

√

mg

Km
Zeq (5)

It can be seen that the Km can be obtained from:

Km =
2mgZ2

eq

I2eq
(6)

Defining the translated system

x̄(t) =

[

ī(t)
z̄(t)
v(t)

][

i(t)− Ieq
z(t)− Zeq

v(t)

]

, V̄c = Vc(t)− Vc−eq (7)

we obtain the linearized system around the equilibrium
point, where Vc−eq = RIeq is the input on the equilibrium
point.

˙̄x =







−R
L 0 0
0 0 1

−Km

√

2 mg

Km

mZeq

2 g
Zeq

0






x̄+





1
L
0
0



 V̄c (8)

3. CONTROL DESIGN

The control is designed using an optimal control design
for the system (8) such that minimizes the quadratic cost
function

J =

∫

∞

0

x̄T (τ)Qx̄(τ) +RV̄ 2
c (τ)dτ (9)

with the control Vc(t) = −kx̄+ Vc−eq + ui(t).

From the classic literature (Hendricks et al. (2008)), it is
known that the solution is given by the Algebraic Ricatti
Equation (ARE)
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z(t)

v̂(t)

Fig. 2. Block diagram of the controller

ATP + PA+Q − PBR−1BTP = 0, (10)

and the gain is given by

k = R−1BTP (11)

As the model presents parameter uncertainties as well
as non-modelled dynamics, an integral term ui(t) in the
control is considered

ui(t) = ki

∫

∞

0

(z(t)− zd(t))dt (12)

where zd(t) = Zeq + r(t), ki ∈ ℜ, r(t) ∈ ℜ an bounded
external reference signal. Finally, the obtained control
strategy is given by:

Vc(t) = −k1i(t)− k2z(t)− k3v(t) + kXeq + ui(t) (13)

where Xeq = [Ieq Zeq 0]T . As the system does not directly
allow to measure the velocity v(t), it is necessary to
reconstruct it. The velocity of the system can be estimated
by the application of the arbitrary-order robust exact
differentiator (Levant (2003)) in finite-time, such that the
control is

Vc(t) = −k1i(t)− k2z(t)− k3v̂(t) + kXeq + ui(t), t ≥ t1
(14)

with t1 finite, that is discussed in the following subsection.

3.1 Arbitrary-order robust exact differentiator

With this aim, let us use in this subsection, zi, vi to
denote the variables of the differentiator, and let f0 be a
Lebesgue-measurable signal to be differentiated. The nth
order differentiator can be expressed in the following form:

ż0 = v0 = z1 − κn|z0 − f0|
n

n+1 sign(z0 − fo),

ż1 = v1 = z2 − κn−1|z1 − v0|
n−1

n sign(z1 − v0),
...

żi = vi = zi − κn−i|zi − vi−1|
n−i

n−i+1 sign(zi − vi−1),
...
żn = −κ1 sign(zn − vn−1)

(15)
for suitable positive constant coefficients κi to be chosen
recursively large in the given order. Under the assumption

that a constant M exists such that |f (n)
0 | ≤ M , a pos-

sible selection of the given constant is κ1 = 1.1M, κ2 =
1.5M1/2, κ3 = 2M1/3, κ4 = 3M1/4, κ5 = 5M1/5, κ6 =
8M1/6; however, different values can be used. The follow-
ing equalities are true in the absence of measurement noise
after a finite time transient process (Levant (2003)):

|zi − f
(i)
0 (t)| = 0 i = 0, ..., n (16)

It was demonstrated by Levant (2003) that non-idealities
like measurement noise and finite frequency commutation
cause a bounded error in the estimated derivatives and, as
a result, a bounded loss of accuracy for the controller that
uses the “noisy” derivative estimates.

In particular, let consider f(t) the signal, affected by
noise, to be differentiated. If the input noise satisfy the
inequality |f(t) − f0| ≤ ǫ. Then the following inequalities
are established after a finite time transient:

|zi − f
(i)
0 | ≤ µiǫ

(n−i+1)/(n+1), i = 0, ..., n

for positive constants µi depending on the parameters of
the differentiator.

It is interesting to note that the velocity reconstruction is
independent from the dynamics of the rest of the variables
of the system.

4. RESULTS

The proposed controller with a robust exact differentiator
was implemented both on simulation as well as in an ex-
perimental framework, in order to check the performance
on both ideal and real conditions.

4.1 Simulation results

The simulation was run using MATLAB 2013a software,
with an i5-Core Intel processor PC. The considered param-
eters for the model are depicted in Table 1. In this case, the
model was taken with reference to the equilibrium point
given by Zeq = 6 mm, resulting in the linearized system:

Σ(Xeq ,Ueq) :











−0.2424 0 0 2.4242
0 0 1 0

−23.19 3260 0 0
1 0 0 0
0 1 0 0











, (17)

and the matrix in the cost function were taken as

Q =





103 0 0
0 1 0
0 0 1



 , R = 1. (18)

By solving the appropiate Ricatti equation ATP + PA +
Q− PBR−1BTP = 0, the resulting gain matrix

k = [ 147 −34733 −608.3 ] . (19)

Is interesting to note how this control could correspond to
a cascaded P control for the current with a gain k1 and a
PD control for the mechanical part given by k2 = kp and
k3 = kd.
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Fig. 3. Simulation results for a sine reference

The simulation was run not considering the integral term,
with sine reference of 1 mm of amplitude and a frequency
0.4 Hz, including a measurement noise of zero mean,
standard deviation σi = 10−4 A for the current, σz =
10−5 m for the position, and maximal amplitudes 2 A
for the current and 12 mm for the position. A robust
differentiator with κ1 = 5, κ2 = 10, M = 1 has
been applied. The results are shown in Fig. 7, where
it is interesting to notice how the robust derivative can
reconstruct the actual velocity of the system. In Fig. 8 it
is shown the performance of the simulated system with a
pulse reference around the same equilibrium point, with
an amplitude of 1 mm and also a frequency of 0.4 Hz. In
Fig. 5 it is shown the specific performance of the robust
differentiator.

Parameter Value Units

Inductance L 0.4125 H
Coil impedance Rc 11 Ω

Gravitational acceleration 9.78 m/s2

(Mexico City)
Ball mass 65.968 g

Magnetic constant Km 6.5308 · 10−5 Nm2/A2

Max. Vc(t) 20 V

Table 1. Maglev parameters

4.2 Experimental results

The experiments were done on a Quanser Maglev system
as shown in Fig. 6, using Matlab 2010a with data acquisi-
tion provided by a dSpace board controller with sampling
time of 100 µs. In this case, as there exists a parametric as
well as measurement uncertainties and noise, the integral
term was given a gain of ki = −2 · 105.
The results are shown in Fig. 7 and Fig. 8 for a similar
reference than the ones given in the simulation. It can be
noticed how the velocities are well reconstructed, while
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Fig. 4. Simulation results for a pulse reference

4 5 6 7 8 9 10 11 12 13
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

t (s)

V
c (

m
/s

)

 

 
v(t)
v

s
(t)

Detail at T=7.5s

Fig. 5. Velocity reconstruction by the robust differentiator
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Fig. 6. Quanser TMMagnetic Levitator
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keeping the system stable and tracking the desired refer-
ence. For presentation purposes, the control output Vc is
filtered to show its mean value.
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Fig. 7. Experimental results for a sine reference
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Fig. 8. Experimental results for a pulse reference

5. CONCLUSIONS

In this work we have presented simulation and experimen-
tal results of a LQR control for a magnetic levitator system
with integral term and robust exact reconstruction of the
velocity for regulation and tracking, considering external
perturbations and non-modeled dynamics, as well as noisy

measurements. It was shown that, even when the velocity
observer is used in the control loop, it does reconstruct
this state and helps to achieve an stable control, even
in the presence of disturbances and measurement noise.
Future work involves a the design and implementation of
experimental nonlinear model control schema and higher
derivatives reconstruction for a wider operation set.
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