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Abstract: In this article a coupled observer to estimate the glucose concentration at the input of a
hydrogen production reactor is proposed. The observer developed consists of a Luenberger observer
coupled to a super-twisting observer. The Luenberger observer is used to estimate the concentrations
inside the reactor. The super-twisting observer uses the precedent estimations to estimate the glucose at
the reactor input. Convergence of the observer is discussed and results demonstrate the feasibility of the
strategy proposed.
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1. INTRODUCTION

Biological production of hydrogen (biohydrogen), using (mi-
cro) organisms, is an area of technology development that offers
the potential production of usable hydrogen from a variety of
renewable resources. Biological systems provide a wide range
of approaches to generate hydrogen, and include direct biopho-
tolysis, indirect biophotolysis, photo-fermentations, and dark-
fermentation, Levin et al. (2004).

Once a biological system to produce hydrogen has been devel-
oped, the operational conditions have to be optimized in order
to achieve a desirable process performance.

In this context, Ramirez et al. (2012) proposed a real-time
optimization strategy to maximize the hydrogen productivity
of a fermentation reactor. The process productivity, depending
on the organic loading rate (OLR), was defined as objective
function. The OLR depends on both, the flow rate (Qin) and
the substrate concentration (Gluin) at the reactor input. Qin
was selected as the optimization variable while Gluin was
maintained constant along the process operation. Nevertheless,
Gluin is in reality a bounded perturbation varying along the
time which must be known in order to correctly maximize the
hydrogen productivity. Since measure the glucose concentra-
tion at the reactor input on-line is not practical, it must be
estimated.

The problem of estimating unknown inputs in biotechnological
processes has been addressed before in several works. For in-
stance, Moreno and Dochain (2013) proposed a discontinuous
observer able to estimate in finite time both unmeasured states
and the unknown input of a SISO nonlinear second order sys-

tem. The only requirements are the observability of both the
states and the unknown input, and that the unknown input is
a uniformly Lipschitz time function. This strategy was tested
in a simple biotechnological model. Aceves-Lara et al. (2007)
addressed the problem of estimating simultaneously the states
and the input concentrations of an acidogenic process used for
biohydrogen production. The input and states concentrations
were estimated using a state transformation and an asymptotic
observer. In this work, we propose an alternative strategy to
estimate the unmeasured input of a bioreactor for hydrogen pro-
duction by coupling a Luenberger observer to a super-twisting
observer.

The hydrogen production reactor has two inputs, Gluin (an
uncontrolled input) and Qin (a controlled input). On the other
hand, the total gas flow rate (Qgas) and the hydrogen fraction
(%H2) at the reactor output are measured. Using these mea-
surements, the hydrogen flow rate (qH2,gas) can be calculated.

As shown in figure 1, the observer consists in a Luenberger
observer followed by a super-twisting observer. By measuring
qH2,gas, the Luenberger observer estimates the glucose and
the biomass concentrations in the reactor. Then, the super-
twisting observer uses these estimations to estimate the glucose
concentration at the reactor input.

The article is organized as follows: section 2 presents the model
of the anaerobic hydrogen production reactor used to develop
the coupled observer. In section 3 the super-twisting observer to
estimate the input glucose is presented. Since the super-twisting
observer needs the glucose and the biomass concentrations
inside the reactor to be implemented, in section 4 a robust
Luenberger observer is developed to estimate them. In section 5
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results are presented and discussed. Finally, section 6 is devoted
to conclusions.

Fig. 1. Block diagram of the observation system.

2. MODEL OF THE HYDROGEN PRODUCTION
REACTOR

The anaerobic hydrogen production reactor considered in this
work is modeled, as proposed in Aceves-Lara et al. (2008), by
the following set of ordinary differential equations (ODE):

˙Glu
˙Ace
˙Pro

Ḃu

Ẋ
˙CO2

Ḣ2

 = Kr −D


Glu−Gluin

Ace
Pro
Bu
X

CO2

H2

−


0
0
0
0
0

qCO2,gas

qH2,gas

 (1)

where Glu, Ace, Pro, Bu, X , CO2 and H2 represent the con-
centrations in gL−1 of glucose, acetate, propionate, butyrate,
biomass, carbon dioxide and hydrogen, respectively, in the liq-
uid phase. The vector r describes the kinetics of the involved
biological reactions (in gL−1d−1), D is the dilution rate (d−1)
and qCO2,gas and qH2,gas the gas flow rates of carbon diox-
ide and hydrogen expressed in gL−1d−1, respectively. Finally,
K ∈ R7×2 represents the matrix of pseudo-stoichiometric
coefficients.

The reaction pathway is described by two reactions occurring
in parallel. Thus, the vector r is composed of the specific
glucose uptake rate multiplied by the biomass concentration in
the reactor:

r =

 µmax1Glu

KGlu1 +Glu
µmax2Glu

KGlu2 +Glu

X
Furthermore, the differential equations for the gas phase with
constant gas volume are:

dCO2,gas

dt
= −CO2,gasQgas

Vgas
+ ρCO2

V

Vgas
(2)

dH2,gas

dt
= −H2,gasQgas

Vgas
+ ρH2

V

Vgas
(3)

with:

Qgas =
RTamb

Patm − pvap,H2O
V

(
ρH2

MH2

+ ρCO2

)
(4)

ρH2
= kLaH2

(H2 −MH2
KH,H2

pH2,gas) (5)

pH2,gas =
H2,gasRTreac

MH2

(6)

ρCO2 = kLaCO2(CO2 −KH,CO2pCO2,gas) (7)

pCO2,gas = CO2,gasRTreac (8)

whereCO2,gas andH2,gas are, respectively, the carbon dioxide
concentration, in molL−1, and the hydrogen concentration, in
gL−1, in the gas phase.

As shown in equation (4), the total gas flow at the reactor
output is the sum of the hydrogen gas flow plus the carbon
dioxide gas flow. The carbon dioxide and the hydrogen gas
flow rates are calculated by considering the transfer of the gas
out from the liquid phase to the gas phase. The carbon dioxide
and the hydrogen concentrations at the liquid-gas interface in
equilibrium are calculated by considering the Henry law. The
pressure of each gas component can be calculated using the
ideal gas law for the two gases.

In the following sections, the values of the constants used in the
reactor model are taken from Aceves-Lara et al. (2008).

3. ESTIMATION OF THE GLUCOSE AT THE REACTOR
INPUT

The glucose dynamics is modeled by:

˙Glu = k11r1 + k12r2 −D(Glu−Gluin)

˙Glu = DGluin + h(Glu,X)

where h(Glu,X) = k11r1 + k12r2 − DGlu. DGluin is
unknown but it is an absolutely continuous function of time,
its dynamics can therefore be modeled as:

d(DGluin)

dt
= δ2(t)

Thus, the dynamics of Glu and DGluin is modeled by the
following ODE system:

˙Glu = DGluin + h+ δ1(t); |δ1| ≤ c1, c1 > 0
˙(DGluin) = δ2(t); |δ2| ≤ c2, c2 > 0

(9)

Note that δ2(t) captures the uncertainties about DGluin while
δ1(t) captures the uncertainties about r, Glu and X .

A super-twisting observer is then proposed to estimate Gluin
as:

˙̂
Glu = ˆ(DGluin) + h(Glu,X) + γ1φ1(ε1)

˙̂
(DGluin) = γ2φ2(ε1)

(10)

where:
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ε =

[
ε1
ε2

]
=

[
Glu− Ĝlu

DGluin − ˆ(DGluin)

]

φ1(ε1) = |ε1|1/2sign(ε1)

φ2(ε1) =
1

2
sign(ε1)

Fridman et al. (2011) propose the following linear matrix
inequality (LMI) to calculate the observer gain Γ = [γ1 γ2]T :

[
ΛTΩ1 + Ω1Λ + εI2 + Ψ Ω1Υ

ΥTΩ1 −Θ

]
≤ 0 (11)

where Θ and Ψ are defined as:

Θ =

[
θ1 0
0 θ2

]
, Ψ = (θ1g

2
1 + θ2g

2
2)ΞΞT

Besides Λ = Λε−ΓΞ and the constant matrices are defined as:

Λε =

[
0 1
0 0

]
, Υ =

[
1 0
0 1

]
, Ξ = [ 1 0 ]

Using the classical circle criterium, a didactic statement can be
found in Khalil (2002), the LMI (11) will be satisfied if and only
if theH∞ norm of the transfer functionGε(s) = Ξ(sI−Λ)−1Υ
is less than 1/max(g1, g2).

Therefore, the following matrix inequality will be satisfied as
well, Scherer and Weiland (2004):

[
ΛTΩ1 + Ω1Λ + ΞΞT Ω1Υ

ΥTΩ1 −α2I2

]
≤ 0 (12)

where:

α <
1

max(g1, g2)
(13)

An observer gain Γ with the objective to decrease the influence
of the uncertainties δ1 and δ2 on the estimation error ε, may be
computed by minimizing the H∞ norm of the transfer function
Gε, as proposed in the optimization problem (14), Scherer and
Weiland (2004), Fridman et al. (2011).

In (14) α ∈ R, Ω1 ∈ R2×2, Ω2 ∈ R2×1, Θ ∈ R2×2, ε ∈ R,
g1|φ1(ε1)| = c1 and g2|φ2(ε1)| = c2. The observer gain,
solution of the optimization problem (14), is then calculated
as Γ = Ω−1

1 Ω2 and ‖Gε‖∞ = α.

In order to implement the super-twisting observer (10) the cur-
rent concentrations of glucose and biomass inside the reactor
are needed. Therefore, in the following section a robust Lu-
enberger observer is developed to estimate the concentrations
inside the biohydrogen production reactor by measuring the
hydrogen flow rate at the reactor output.

4. ESTIMATION OF THE CONCENTRATIONS INSIDE
THE REACTOR

Let the state vector x ∈ R4 be defined as:

x =

 Glu
X
H2

H2,gas


Let us define in addition u = Qin as the controlled input and
w = Gluin as a disturbance.

A reduced nonlinear system can be defined as:

ẋ(t) = f(x, u, w) (15)

By linearizing the non-linear model (15) around an operating
point (x∗, u∗, w∗), a reduced linear state space model is ob-
tained as:

˙̄x(t) = Ax̄(t) +Buū(t) +Bww̄(t) (16)

where:

• A is the Jacobian matrix Jf (x)|(x∗,u∗,w∗).
• Bu is the Jacobian matrix Jf (u)|(x∗,u∗,w∗).
• Bw is the Jacobian matrix Jf (w)|(x∗,u∗,w∗).
• x̄(t) = x(t)− x∗.
• ū(t) = u(t)− u∗.
• w̄(t) = w(t)− w∗.

As mentioned in section 1, the output of the system is the
hydrogen gas flow rate at the reactor output. Thus, according
to equation (4) , the measured output is defined as:

y(t) = Cx(t) =
RTamb

Patm − pvap,H2O
V

(
ρH2

MH2

)
(17)

By regarding equations (5) and (6) it is easy to verify that matrix
C takes the following form:

C =
[

0 0 cH2
cH2,gas

]
with:

cH2 =
RTambV kLaH2

(Patm − pvap,H2O)MH2

cH2,gas
= −R

2TambV kLaH2
KH,H2

Treac
(Patm − pvap,H2O)MH2

The measured output is defined in terms of x̄ as:

ȳ(t) = y(t)− Cx∗ = Cx̄(t) (18)

The following Luenberger observer is proposed to estimate x
without knowledge of w:

˙̄̂x(t) = Aˆ̄x(t) +Buū(t) + L
(
ȳ(t)− ˆ̄y(t)

)
(19)
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min
α,Ω1,Ω2,ε,Θ

α

such that:
α > 0,Ω1 > 0, ε > 0,Θ > 0

max(g1, g2)α < 1Ω1Λ− Ω2Ξ + ΛTΩ1 − ΞΩT2 + ΞTΞ Ω1Υ 02

ΥTΩ1 02 αI2
02 αI2 I2

 < 0

[
Ω1Λ− Ω2Ξ + ΛTΩ1 − ΞΩT2 + εI2 + Ψ Ω1Υ

ΥTΩ1 −Θ

]
≤ 0

(14)

Let e = x̄ − ˆ̄x be the error between the real state vector x̄ and
the estimated state vector ˆ̄x. The transfer function from w to e
is therefore given by:

Gwe(s) = (sI − (A− LC))
−1
Bw (20)

An observer gain L with the objective to decrease the influence
of the disturbance w on the estimation error e and accelerate
its dynamics by placing its poles within the stability region
S(d, r, θ), proposed by Chilali and Gahinet (1996), and shown
in figure 2, may be computed by minimizing the H∞ norm
of the transfer function Gwe as proposed in the optimization
problem (23).

In (23) γ ∈ R,W1 ∈ R4×4 andW2 ∈ R4×2. As shown in figure
2, d is the distance between the origin and the vertical strip, r is
the radius of the disk centered at the origin and θ is the angle (in
radians) from the real axis to the strip defining the conic sector.
The observer gain, solution of the optimization problem (23),
is then calculated as L = W−1

1 W2 and ‖Gwe‖∞ = γ.

Fig. 2. Stability region S(d, r, θ)

By regarding equations (16) and (19) it is easy to verify that the
dynamics of the estimation error e is given by:

ė(t) = (A− LC)e(t) +Bww(t) (21)

By solving the optimization problem (23) the eigenvalues of the
dynamic matrix A−LC in (21) are assigned in such a way that
closed-loop stability is warranted and e→ 0 as t→∞ in spite
of the disturbance w, Scherer and Weiland (2004), Chilali and
Gahinet (1996). Therefore, the glucose concentration Glu and

the biomass X inside the reactor asymptotically approach their
true values.

On the other hand, by regarding equations (9) and (10) it is easy
to verify that the dynamics of the estimation error ε is given by:

ε̇(t) = Λε(t) + Υ∆(t)− ΓDΦ(ε1) (22)

with:

∆(t) =

[
δ1(t)
δ2(t)

]
, ΓD =

[
γ1 0
0 γ2

]
, Φ(ε1) =

[
φ1(ε1)
φ2(ε1)

]
If the optimization problem (14) has solution and the true values
of both the glucose and the biomass inside the reactor are
available, all trajectories of system (22) converge in finite time
to the origin for all perturbations satisfying |δi| ≤ gi|ε1|, for
gi > 0 and i = 1, 2, Fridman et al. (2011).

It must be point out that the dynamics of the Luenberger
observer must be faster than the dynamics of the super-twisting
observer in order to have available the true values of the glucose
and the biomass inside the reactor to estimate the input glucose
correctly.

5. RESULTS AND DISCUSSION

The complete observer to estimate the input glucose concen-
tration is the Luenberger observer (19) coupled to the super-
twisting observer (10). Optimization problems (14) and (23)
were solved using the SEDUMI solver over the YALMIP tool-
box in the MATLAB environment, Löfberg (2004).

By considering |δ1| < 3.75, |δ2| < 3.5 and |ε1| < 2.5 the
following vector Γ was computed:

Γ =

[
0.8653
3.3543

]
× 106

On the other hand, the dynamics of the Luenberger observer
was accelerated to converge to the real state faster than the
super-twisting observer one, since the last needs the cor-
rect glucose and biomass concentrations inside the reactor
to estimate correctly the input glucose. Thus, by placing the
poles of the Luenberger observer within the stability region
S(0, 7500, π/3) the following matrix L was computed:
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min
γ,W1,W2

γ

such that:
γ > 0

W1 > 0W1A−W2C +ATW1 − CTWT
2 + I4 W1Bw 04,1

BTwW1 0 γ
01,4 γ 1

 < 0

W1A−W2C +ATW1 − CTWT
2 + 2dW1 < 0[

−rW1 W1A−W2C
ATW1 − CTWT

2 −rW1

]
< 0[

sin(θ)(W1A−W2C +ATW1 − CTWT
2 ) cos(θ)(W1A−W2C −ATW1 + CTWT

2 )
cos(θ)(ATW1 − CTWT

2 −W1A+W2C) sin(θ)(W1A−W2C +ATW1 − CTWT
2 )

]
< 0

(23)

L =

 182.82
1.49
0.10
0.04


The model of the hydrogen production reactor and the ob-
servers were simulated during 25 days in MATLAB considering
a sample period T = 4h. In addition, the ODEs were solved
using the ode15s solver. In order to demonstrate a proper con-
vergence, the observer starts after five days from the process
beginning.

Figure 3 shows in top the glucose concentration inside the
reactor, in solid blue the ’real’ concentration and in dashed red
the estimated one. As can be observed in bottom, the estimation
error remains very close to zero in the complete period of time.
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Fig. 3. Estimation of the glucose concentration inside the re-
actor. In top, in solid blue line the ’real’ concentration
and in dashed red line the estimated one. In bottom, the
estimation error.

Figure 4 shows the biomass concentration inside the reactor.
The biomass estimated converges after one day from the esti-
mation beginning and then remains very close to the ’real’ con-
centration, however, small transitions are presented when the
biomass concentration changes. As can be regarded in bottom,
the error concentration remains around zero in the complete
period of time.
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Fig. 4. Estimation of the biomass concentration inside the
reactor. In top, in blue solid line the ’real’ concentration
and in red dashed line the estimated one. In bottom, the
estimation error.

Once the glucose and the biomass concentrations inside the
reactor have been estimated using the Luenberger observer
(19), we are able to implement the super-twisting observer (10)
to estimate the input glucose concentration. Nevertheless, the
super-twisting observer estimates the dynamics of DGluin.
Gluin is therefore estimated as:

Ĝluin =
( ˆDGluin)

D
=

( ˆDGluin)

Qin/V
=
V ( ˆDGluin)

Qin

Figure 5 shows the flow rate at the reactor inputQin considered
in this application.

In top of figure 6 the ’real’ input glucose concentration (in solid
blue) and the estimated one (in dashed red) are shown. As can
be observed, the glucose concentration remains close to the
’real’ one along the simulation, however, there exists a delay in
the estimation when changes in the input glucose concentration
are presented. In bottom, we can regard that the error estimation
remains very close to zero for almost the complete period
of time. Important estimation errors can be observed for the
transition periods due to the delay mentioned before.
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Fig. 5. Flow rate at the reactor input.
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Fig. 6. Estimation of the input glucose concentration. In top, in
solid blue line the ’real’ concentration and in dashed red
line the estimated one. In bottom, the estimation error.

6. CONCLUSIONS

In this work, a coupled observer to estimate the input glu-
cose concentration in a bioreactor to produce hydrogen was
developed. As the results showed in the previous section, the
strategy proposed allows estimating the glucose at the reactor
input very close to the ’real’ values along the simulation period.
Nevertheless, the convergence was not exact at all as we would
expect due to the convergence discussion in section 4. This
may be caused by the lack of an exact estimation of both the
glucose and the biomass inside the reactor. It suggests that
even if the Luenberger observer is robust, it does not minimize
completely the influence of the disturbance on the error esti-
mation, may be as consequence of the rank of the observability
matrix (rank(O) = 3). It mud be pointed out that the rank of
subsystem x is superior (rank(x) = 4).
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