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Abstract: Suppression of mechanical vibrations is becoming an active field in seismic engineer-
ing. The suppression is solved by either semi-active and active controllers based on nonlinear
dampers or pneumatic actuators. This study describes an adaptive control design for suppressing
mechanical vibrations on a simulated building-like structure. The adaptive method is selected
considering that energy can be saved when the suppression should be done. A simple building
structure was modelled as an interconnected system and it is considered for evaluating the
controller proposal. Therefore, the controller scheme is designed as a decentralized structure.
Each adaptive controller is based on an time varying gain proportional derivative scheme. The
adaptive gain structure is determined using a kind of controlled Lyapunov function. The adaptive
law uses an estimation of velocity based on a robust exact differentiator (RED) implemented as
a variation of the super-twisting algorithm. The adaptive proportional derivative controller is
evaluated on a simulated three floor building-like structure. The set of simulations considered
the presence of an external perturbation forced by a non-regular movement of the building
basement. The controller shows to be efficient to counteract the effect of external mechanical
vibrations. The effect of the vibrations amplitude on the controller performance is also evaluated.
The performance of the proposed controller was superior to the standard proportional derivative
controller as it is proven in this study.

Keywords: Suppression of mechanical vibrations; Adaptive PD control; Active controller;
Seismic structures; Interconnected systems

1. INTRODUCTION

Nowadays, relevant earthquakes have occurred all over the
world. Some of them have been catastrophic because a
large number of persons have died. Moreover, a big number
of civil structures have been destroyed or at least severely
damaged. This condition has enforced the development of
systems that can counteract the oscillations provoked by
earthquakes. Based on the previous idea, the emerging of
new methods in civil engineering has provided reliable,
secure and energy efficient system that can compensate
some degree of oscillations Fisco and Adeli (2011b), Fisco
and Adeli (2011a).

Even when there are some passive solutions to counteract
the effect of earthquake oscillations, they only can actuate
within a very narrow interval of oscillation’s amplitude
and frequency Lu and Lin (2009). The most famous
solution offered by the technique is the so-called timed
mass damper (TMD). This solution proposed for the first
time the idea of interconnecting elements of the civil
structure using a virtual spring-damper system. This was
considered as the most representative solution of the so-
called passive controllers of civil structures. Despite the
contribution offered by TMD, the single frequency where

this device can oscillate produces a serious limitation over
the performance of this passive controller.

In 1988, Clark proposed the concept of multiple timed
mass damper (MTMD) to control structural vibrations in
a wider frequency range Housner et al. (1997). Since that
moment, a big number of results were proposed using the
concept of MTMD Guo and Chen (2007). The major issue
when MTMD is considered is the constrain on the model
structure which should be discrete . This solution is still
using a semi-active framework.

In the beginnings of 90’s, the concept of active control
of building structures was introduced. Active timed mass
damper (ATMD) was the first type of solution within the
method. This system included an actuator between the
building structure and the TMD. This actuator applies
on-line force to compensate mechanical vibrations. This
method was successfully implemented to regulate both
lateral and rotation vibrations using the linear quadratic
regulator control concept (LQR). Li proposed a distributed
array of mini ATMD to compensate vibration in lateral
sense. This strategy showed better result compared to the
case when a single TMD was considered. Stancioiu Stan-
cioiu and H.Ouyang (2012) proposed a sequence of syn-
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chronized TMD with central frequencies forming a discrete
spectrum. This strategy produced a more effective and
wider frequency range where the actuator was effective.

In 1990, the first actual application of ATM was developed
by Ikeda et al. (2001). A real ten-floors building was in-
strumented with two ATM to control lateral and torsional
vibrations. The control algorithm used the same LQR
mentioned in Hanagan and Murray (1997). In average, this
controlled building was 26 % less affected by hurricane
winds and earthquakes mechanical vibrations. The same
scheme was implemented but considering the instrumen-
tation of multiple mini ATMD and it was compared with
the single ATMD system. The superior performance of
multiple actuated system was evidenced.

Fuzzy logic (FL) and proportional derivative (PD) con-
trollers applied over instrumented buildings were com-
pared in Nomura et al. (2007). FL controller was more effi-
cient considering that similar oscillations were equally sup-
pressed but using less energy. This condition was achieved
as consequence of the state dependent gain scheme which
is natural in the FL control method.

Recently, distributed actuators have been considered to
compensate mechanical vibrations in building systems.
The first proposal where multiple distributed actuators
were considered used a computational model. The con-
troller was designed using the LQR structure. This con-
troller showed to be very efficient when mechanical vi-
brations appeared in lateral and torsional directions. This
distributed controller design was also tested to reduce the
mechanical vibrations induced by walking over a business
building structure.

Optimal distribution of actuators was proposed in Saleh
and Adeli (1998) to compensate mechanical vibrations.
The controller implemented to regulate each actuator was
LQR. This solution also showed that a reduced number of
actuators cannot be sufficient to compensate mechanical
vibrations but a new problem appeared, the actuator
saturation which is still a matter of concern. This condition
happened when the actuator has to apply big amounts of
energy. One option to overcome the actuator saturation
used the acceleration feedback.

The necessity of reducing energy when the mechanical
vibration must be suppressed and considering the eventual
presence of actuator saturation enforce the application
of adaptive controller instead of robust strategies. This
conditions was confirmed indirectly when a class of sliding
mode controller was implemented/compared with integral
and LQR controllers.

Model predictive control (MPC) has been also evaluated to
compensate mechanical vibrations. This kind of controller
was useful when the optimization problem was the main
objective. However, this controller strategy also required
big amounts of energy that cannot be applied in real build-
ing structures. However, MPC showed a 43 % reduction
for root mean square of acceleration compared with the
conventional LQR controller. A similar controller based
on active tendons was evaluated and confirmed a better
performance.

All the previous controllers considered the position and
velocity feedback of beams forming the building structure
Symans and Constantinou (1999). This conditions can
be hardly hold it in real buildings. Therefore, an output
based controller must be considered when the mechanical
vibrations of real building structures should be suppressed.
At this moment, there are just a few of studies considering
the output based controller for suppressing mechanical
vibrations. The main issue that must be solved when the
output based controller is applied regards to the necessity
of estimating velocity within a fixed period of time.

The aim of this work is to evaluate the application of
the output based controller based on the adaptive PD
controller supplied with the super-twisting structure to
estimate velocity in finite time Levant (1993), Levant
(1998).

The rest of the paper is organized as follows, in Section 2
the Notation section is described. The section 3 describes
the state space representation of the building structure.
After that, the STA working as a RED is described. In the
same section, the extended system that incorporates the
STA to estimate the derivative of the error signal in closed
loop with the twisting controller is given. In section 3 the
main result is introduced. Numerical results are presented
in section 4 and finally in section 5, some conclusions are
given.

2. NOTATION

The following notation was used in this study: Rn repre-
sents the vector space with n-components. ⊤ is used to
define the transpose operation. ‖z‖ is used to define the

euclidean norm of z ∈ R
n. ‖z‖

2

H := z⊤Hz is the weighted
norm of the real-valued vector z ∈ R

n with weight matrix
H > 0, H = H⊤, H ∈ R

n×n. The matrix norm labelled as
‖D‖2, D ∈ R

n×n is defined as the maximum eigenvalue of
the matrix D. If two matrices N ∈ R

n×n and M ∈ R
n×n,

fulfils M > N (≥), that means that M − N is a positive
definite (semidefinite) matrix. The symbol R+ represents
the positive real scalars. The symbols In×n and 0n×n were
used to represent the identity matrix I ∈ R

n×n and the
matrix formed with zeroes of dimension n× n.

3. STATE SPACE FORMULATION OF SEISMIC
STRUCTURES

Consider a multiple-storey seismic structure equipped with
variable friction dampers as shown in Fig. 1. The notations
mi, ki and xi(t) in Fig. 1 represent the mass, stiffness,
and relative-to-the-ground displacement of the i-th floor,
while kb,i and Ni(t) denote the stiffness of the bracing
and the controllable clamping force of the i-th friction
damper, respectively. When subjected to a seismic force,
the motion of the structure may be formulated in a state
space equation, i.e.

M
d2q(t)

dt2
+ C

(

q(t),
dq(t)

dt

)

dq

dt
+G(q(t)) +

Σ(q(t),
dq(t)

dt
, t) = u(t)
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Fig. 1. Mechanical representation for one vertical section
of the building structure. It shows the presence of
an active damper place between the building and
earth. Each vertical column used to construct the
building structure is also represented as an natural
damper placed in parallel to a passive spring. This
section of the system is used to consider the energy
accumulation (stiffness)obtained as consequence of
building torsion.

where the vector q represents the state of the structure
which contains the relative-to-ground velocities and dis-
placements of all floors; u denotes the vector of the con-
trollable forces provided by the variable friction dampers;
w is the vector of the ground accelerations; M denotes the
system matrix that is composed of the structural mass,
damping and stiffness matrices; C, G and E represent
the distribution matrices of the Coriolis, gravitational and
external exciting forces, respectively. It must be pointed
out that although (1) looks similar to that of a typical
active control system, the control forces in u are essentially
passive (resistant) friction forces. The structural members
of the building system are modelled as a classical lon-
gitudinal rod for the axial wave motion, a Timoshenko
beam for flexural waves, and a classical torsional shaft
for the torsional mode. A small deformation is assumed
so that the linear theory is valid and all three types of
wave motions are uncoupled from each other for a single
structural member. The effect of viscous damping, which
was not considered in the original version of RMM, is
included as an extension. A uniform treatment of joints of

structures is suggested to keep the number of unknowns in
the formulation of the RMM for structures with MTMDs
the same as that without MTMDs. It is noted that the cur-
rent formulation is presented in a way that is particularly
convenient for programming.

Using the state variable representation of the mechanical
structure (1), the second order nominal model presented
above can be represented as follows:

d

dt
xi
a(t) = xi

b(t)

d

dt
xi
b(t) = f(xi(t)) + g

(

xi (t)
)

ui (t)

+ζi(xi(t), xi+1(t), xi−1(t), t)

(1)

The vector xi
a represents the three coordinate position of

each column’s centre of gravity. The associated vector xi
b

is the corresponding velocity of those three coordinates.
Finally, the function ζi represents the uncertainties and
perturbations produced by the presence of earthquake, the
movement of the neighbour columns, wind flows, etc. In
this paper, it is assumed that

∥

∥ζi(xi, xi+1, xi−1, t)
∥

∥

2
≤ ηi0 + ηi1

∥

∥xi
∥

∥

2
, ηi0, η

i
1 ∈ R

+

The control structure was proposed following the adaptive
PD scheme. This class of control model obeyed

u(t) =
(

g(x(t))−1
)

(

kp(t)e(t) + kd(t)
d

dt
e(t)

)

where

x =

[

e⊤,
de

dt

⊤
]⊤

, e = [x1
a, x

2
a, · · · , x

n
a ]

⊤

de

dt
= [x1

b , x
2
b , · · · , x

n
b ]

⊤

The mechanical nature of building structure is used here
to consider that a nonlinear system described by a feasible
distributed second order nonlinear differential equation
can be used for representing it mathematically.

The drift term f : R2n → R
n is a Lipschitz function. The

following assumption is considered valid in this study.

Assumption 1. The nonlinear system (1) is controllable.

Based on the previous fact, the input associated term
g : Rn → R

n×n satisfies.

0 < g− ≤ ‖g (z)‖F ≤ g+ < ∞, ∀z ∈ R
n (2)

It is evident that matrix g (z(t)) is invertible ∀t ≥ 0.

In this study, we considered that measurements of building
displacements can be obtained on-line. Under these con-
siderations, we proposed that exists a set of output signal
y ∈ R

n which is given by yi = xi
a.

The following assumptions are assumed to be fulfilled in
this study:

Assumption 2. The nonlinear function f (·) is unknown
but satisfies the Lipschitz condition

‖f (x) − f (x′)‖ ≤ L1 ‖x− x′‖ (3)

In the previous inequality, x, x′ ∈ R
2n and L1 ∈ R

+.

4. PROBLEM FORMULATION

The problem considered in this paper was to compensate
the presence of mechanical oscillations of the building-
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like structure. The previous statement can be reformu-
lated as to design an output feedback controller such that
‖xi

a(t)‖ ≤ v+ with v+ a positive bounded scalar which rep-
resents the upper limit for internal building displacements
before it could damaged. This condition must be hold it
for any time and despite the presence of external pertur-
bations that can include the appearing of earthquakes,
faster winds, etc. This problem can be considered a class
of stabilization problem.

5. CONTROLLER STRUCTURE

5.1 Design of the Adaptive PD controller

In general, a PD controller is designed using the assump-
tion regarding e (t) and de

dt (t) are measured simultaneously
where e is the tracking or the regulation error. This is
not the regular case in real building mechanical structure
represented in Figure 1. Otherwise, an important resources
investment is required. Therefore, in classical literature,
one can find two important solutions: to construct an
observer or using a first order filter to approximate the
error derivative. The first one requires the system structure
(that is in this paper is assumed to be unknown because
the presence of external perturbations and internal uncer-
tainties) and in the second case, the derivative approxi-
mation is usual poor, specially if the output information
is contaminated with noises. One additional option is
considering a class of RED that can provide a suitable
and accurate approximation of the error derivative. Super
Twisting Algorithm (STA) has demonstrated to be one of
the best RED in several times.

5.2 Super-Twisting Algorithm

In counterpart of some others second order sliding modes
algorithms, the STA can be used with systems having
relative degree one with respect to the chosen output
Levant (1993). The STA application as a RED is described
as follows. If w1 (t) = r (t) where r(t) ∈ R is the signal to
be differentiated, w2(t) = dr

dt (t) represents its derivative

and under the assumption of
∣

∣

dr
dt (t)

∣

∣ ≤ r+, the following

auxiliary equation is gotten dw1

dt (t) = w2(t) and dw2

dt (t) =
d2r
dt (t). The previous set of differential equation is a state
representation of the signal r(t).

The STA algorithm to obtain the derivative of r (t) looks
like

d

dt
w̄1 (t) = w̄2 (t)− λ1 |w̃1(t)|

1/2
sign (w̃1(t))

d

dt
w̄2 (t) = −λ2sign (w̃1(t))

w̃1 := w̄1 − w1 d(t) =
d

dt
w̄1 (t)

(4)

where λ1, λ2 > 0 are the STA gains. Here d(t) is the output
of the differentiator Levant (1998).

In the previous equation,

sign(z) :=

{

1 if z > 0
∈ [−1, 1] if z = 0

−1 if z < 0
(5)

5.3 PD controller with the Super-Twisting Algorithm

A single adaptive PD controller is applied over each section
of the building-like mechanical structure. This is a class
of ATMD. Each adaptive PD controller proposed in this
study obeys the following structure

ui (t) = −k1,i (t) ei (t)− k2,i (t) di (t) (6)

where ei is xi
a. The gains in the PD controller are deter-

mined by

k1,i (t) = g−1

i (xa(t))
(

k̄1,i(t) + k∗1,i
)

k2,i (t) = g−1

i (xa(t))
(

k̄2,i(t) + k∗2,i
) (7)

with k̄1,i and k̄2,i are time varying scalars adjusted by a
special tracking error dependent adaptive law described by
the following ordinary differential equations:

d

dt
k̄1,i(t) = −π−1

1,i ei(t)M
⊤

a P2,iEi(t)

d

dt
k̄2,i(t) = −π−1

2,i ei+n(t)M
⊤

b P2,iEi(t)
(8)

where π1,i and π2,i are free parameters to adjust the
velocity of convergence for the adjustable gains. In (7),
the parameters k∗1,i and k∗2,i are positive constants. The

matrices Ma and Mb are given by Ma = [1 0]⊤ and

Mb = [0 1]⊤. Additionally, the term Ei = [ei ei+n]
⊤. The

matrix P2,i is positive definite and it is presented in the
main statement of the main theorem of this article.

The variable di(t) is obtained from the following particular
application of the STA as RED:

d

dt
x̄i
a(t) = x̄i

b(t)− λ1,i |x̃a(t)|
1/2

sign (x̃a(t))

d

dt
x̄i
b(t) = −λ2sign (x̃a(t))

x̃i
a = xi

a − x̄i
a

(9)

Considering that displacements on building-like structures
are small and considering the assumption 1 and 2, it is
easy to get that | ddtx

i
b(t)| ≤ h∗ where h∗ is a finite positive

scalar.

The following extended system describes the complete
dynamics of the error signal in close-loop with an adequate
implementation of (4) and the controller proposed in (6):

d

dt
xi
a(t) = xi

b(t)

d

dt
xi
b(t) = f(xi(t))− k̄1,i (t) ei (t)− k̄2,i (t) di (t)

+ζi(xi(t), xi+1(t), xi−1(t), t)

d

dt
x̃i
a(t) = x̃i

b(t)− λ1,i |x̃a(t)|
1/2

sign (x̃a(t))

d

dt
x̃i
b(t) = −λ2sign (x̃a(t))−

d

dt
xi
b(t)

d

dt
k̄1,i(t) = −π−1

1,i ei(t)M
⊤

a P2,iEi(t)

d

dt
k̄2,i(t) = −π−1

2,i ei+n(t)M
⊤

b P2,iEi(t)

(10)

The following section shows the main result of this paper.
The theorem introduced in that section gives a construc-
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tive way to adjust the gains of the STA and it provides
the applicability of using the adaptive gains for the PD
controller.

5.4 Convergence of the adaptive PD controller

The stability of the e = is justified by the result presented
in the following theorem:

Theorem 1. Consider the nonlinear system given in (1),
supplied with the control law (6) adjusted with the gains
given in (7) and the derivative of the error signal obtained
by means of equation (9), if there exist a positive scalar
αi and if the gains are selected as λ1,i > 0, λ2,i > 0, the
next Lyapunov inequalities always have a positive definite
solution P1,i,

A⊤

1,iP1,i + P1,iA1,i ≤ −Q1,i

A1,i =

[

−λ1,i 1
−2λ2,i 0

]

, Q1,i = Q
⊺

1,i > 0, Q1,i ∈ ℜ2×2

(11)
then for every positive value of L1 satisfying equation (3)
and positive value of h+, there exist positive gains k̄1,i,

k̄2,i such that if the Riccati equations given by

P2,i (A2,i + αiI)+(A2,i + αiI)
⊺
P2,i+P2,iR2,iP2,i+Q2,i ≤ 0

(12)
have positive definite solution P2,i with

A2,i =

[

0 1
−k∗1,i −k∗2,i

]

, R2,i = Λa,i + Λb,i

Q2,i = 4λmax

{

Λ−1

b,i

}

I2×2 + Λ̄a,i, Λ̄a,i = L1Λa,i,

Λa,i,Λb,i > 0 and symmetric, Λa,i,Λb,i ∈ R
2×2 αi ∈ R+

(13)
and if the adaptive gains of the PD controller are adjusted
by (8), thus the trajectories of E⊺ =

[

xa
1 , ..., x

a
n, x

b
1, ..., x

a
n

]

are globally ultimately bounded with bound

lim
t→∞

E⊤ (t)P2E (t) ≤
n
∑

i=1

γi

αi
(14)

where

P2 =









P2,1 02×2 · · · 02×2

02×2 P2,2 · · · 02×2

...
...

. . .
...

02×2 02×2 · · · P2,n









(15)

and γi = 2λmax

{

Λ−1

b,i

}

(

h+

i + 2ζ∗+ + η0,i
)

Proof. The complete proof of this theorem is skipped.
However, the main tool to prove that the controller en-
forces the mechanical oscillations compensation is the fol-
lowing Lyapunov-like function.

V
(

ξ, E, k̄1, k̄2
)

=

n
∑

i=1

Vi

(

ξi, Ei, k̄1,i, k̄2,i
)

Vi

(

ξi, Ei, k̄1,i, k̄2,i
)

= V1,i (ξi) + V2,i (Ei) + V3,i

(

k̄1,i, k̄2,i
)

with V1,i (ξi) = ξ⊤i P1,iξi, V2,i (xi) = x⊤

i P2,ixi and
V3,i

(

k̄1,i, k̄2,i
)

= π1,ik̄
2
1,i + π2,ik̄

2
2,i.

The term labelled ξi is given by ξi =
[

|δ1,i|
1/2sign (δ1,i) δ2,i

]⊤

.

Finally, ξ = [ξ1, · · · , ξn]
⊤.
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Fig. 2. Estimation of velocity of center of mass for one se-
lected column based on the STA applied as RED. The
estimated velocity is compared with the measured
velocity obtained form the model exported to Matlab.
A similar behaviour was obtained for the remainder
columns.

6. NUMERICAL RESULTS

When the adaptive PD controller is computed for the sys-
tem, the derivative obtained by the STA brings some ad-
vantages. The robustness of STA applied as differentiator
forced a better performance for any controller applied on
second order systems when the only available information
is the output signal.

Then, the first part of the numerical simulations is de-
voted to evaluate the performance of the STA as RED.
The derivative of building like positions is compared with
the information provided by the measurements obtained
directly form the simulation of the system presented in
Figure 1 and the derivative of reference signal. The differ-
entiation of the error signal is shown in Figure 2. In this
figure, one can observe how the estimation process is ac-
curate when the STA is applied to the velocity estimation
of the some selected section of the building structure.

The simulation results for the stabilizing performance of
x-displacement of one column of the building system are
depicted in Figure 3 and 4. In this figure, all the states
never leave the predefined region proposed in the theorem.
This condition confirmed the performance of the controller
proposed in this study. Moreover, the fast convergence
obtained of the tracking error prevents important damage
on the building structure.

The x-displacement of the center of mass for the same
selected column returned to its equilibrium point within
fifteen seconds after the simulated earthquake (Fig. 3). The
same condition was obtained for the y-displacement that
also converged within the firsts fifteen seconds of simu-
lation (Fig. 4). This condition was considered acceptable
of one takes into account that seismic alarms can provide
information regarding the presence of seismic waves 40 sec-
ond prior they could have any influence over the building.
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Fig. 3. Evaluation of the x displacement for the same
center of mass for one selected column based on
the adaptive PD controller. The controller forced the
returning to the equilibrium point of the building
structure
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Fig. 4. Evaluation of the y displacement for the same
center of mass for one selected column based on
the adaptive PD controller. The controller forced the
returning to the equilibrium point of the building
structure

7. CONCLUSION

An adaptive output based controller based on the pro-
portional derivative controller was implemented to force
the regulation of a building structure. The controller was
fed with the information of the building displacement as
well as the velocity estimated by a RED based on the
application of the super twisting algorithm. The closed
loop controller forced the ultimate boundedness of the
tracking errors to a region around the origin. A special
class of Lyapunov function was the main tool for obtaining
the adaptive gains of the PD controller as well as the
convergence of the STA used as RED. The controller was
successfully implemented to force the building to reject the
effect of a simulated earthquake.
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