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Abstract: This work deals with the problem of the stabilization and control of a class of linear
unstable system plus time-delay. An observer is designed in order to obtain delay-free dynamics
of the system, allowing to stabilize the delayed unstable plant. Stability conditions are given
in terms of the parameters of the system and the time delay size. The regions of stability for
the gains of the proposed observer based controller are computed and the results are tested in
numerical simulations.
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1. INTRODUCTION

Time-delay systems appear commonly in different indus-
trial processes. Delay phenomena is associated with sys-
tems where transport of material and/or information oc-
curs. Systems with delays arise in engineering, biology,
physics, traffic flow modeling, etc. Sipahi et al. (2011).
Time delays are often a source of complex behaviors such
as oscillations, bad performance or even instability in
dynamical systems, thus considerable attention had been
paid on the stability analysis and the control design for
time-delay processes, Niculescu (2001), Richard (2003).
Hence, the study of systems with delays has been a subject
of great interest during the last decades.

Different strategies have been developed to design con-
trollers for delayed processes. A common approach is to ap-
proximate the time-delay operator by means of a Taylor or
Padé series which could lead to a non minimum-phase sys-
tem with rational transfer function representation. On the
other hand, some recent works have been devoted to the
analysis of stability and stabilization of systems with delay
based on Lyapunov-Krasovskii and Lyapunov-Razumikhin
approaches, Kolmanovskii and Richard (1999), Fridman
and Shaked (2002), Gu et al. (2003).

A common approach to deal with time delay systems is
the Smith Predictor, (Smith (1957), Palmor (1996)) which
consists in counteracting the time delay effects by mean of
strategies intended to estimate the effects of current inputs

⋆ This work was supported in part by CONACyT-México, Under
Grant 61713.

over future outputs. Unfortunately the Smith Predictor is
restricted to stable plants. In order to handle with unsta-
ble plants, some modifications of the SP original struc-
ture have been proposed (see for instance Seshagiri et al.
(2007) and Normey-Rico and Camacho (2008)). In Rao
and Chidambaram (2006), it was presented an efficient
modification to the Smith predictor to control unstable
second order systems with time delay, using the direct
synthesis method. With a different perspective, Normey-
Rico and Camacho (2009), propose a modification to the
Smith predictor to deal with high-order unstable delayed
systems. However, it is necessary a discrete implementa-
tion to cancel unstable roots, yielding high order discrete
controllers which need precise parameters, Normey-Rico
et al. (2012).

Classic controllers P, PI and PID are also studied to
delayed processes. For example Silva et al. (2004) design
PID controllers for first order unstable systems. An step
forward is given by Xiang et al. (2007), where conditions
for the stabilization of second order unstable systems with
PID controllers are proposed.

Many chemical and biological systems exist whose dynam-
ics present second or higher order behavior. Continuous
stirred tank reactors, polymerization reactors and bio-
reactors are inherently unstable by design; these types of
systems can be modeled as open-loop unstable systems
plus time delay. The stabilization of linear systems with
one unstable pole, n real stable poles and time delay, are
tackled in Lee et al. (2010) by static output feedback and
PI-PID controllers. In Hernandez et al. (2013), necessary
and sufficient conditions for the stabilization of linear
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systems by static output feedback for SISO systems with
one unstable pole, a couple of complex conjugate stable
poles and time delay, are provided. Using an observer
based control scheme, the stabilization of high order sys-
tems with real poles, two of them unstable, is dealt in
Novella Rodŕıguez et al. (2014).

This paper is concerned with the stabilization problem of
systems with two unstable poles and a pair of complex
conjugate stable poles plus time delay. The control scheme
relies on an observer-based structure with a memory ob-
server and a memoryless state feedback, so only two gains
are enough to stabilize the observer scheme, and two other
to stabilize the open loop unstable plant. Necessary and
sufficient conditions are stated to guarantee the existence
of the proposed scheme in terms of an algebraic relation
between the size of the delayed term and the system time
constants. On the contrary of modified Smith predictors,
the scheme only contains discrete time-delays (and not
distributed ones), which makes easy its practical imple-
mentation (see Zhong (2006) for details on numerical im-
plementation of modified Smith predictor scheme).

This work is organized as follows; section 2 introduces the
problem statement. In section 3 some preliminary results
are briefly presented. Then, in section 4 the proposed
control strategy is presented, furthermore necessary and
sufficient conditions for the existence of the stabilizing
observer-based control structure are given. In section 5
some numerical simulations of an academic example are
presented. Finally, some conclusions are given in the last
section.

2. PROBLEM FORMULATION

Consider the following class of single-input single-output
(SISO) linear systems with delay term:

Y (s)

U(s)
= G(s)e−τs, (1)

where U(s) and Y (s) are the input and output signals
respectively, τ ≥ 0 is the constant time delay and G(s) is
the delay-free transfer function. Notice that with respect
to the class of systems (1) a traditional control strategy
based on an static output feedback of the form:

U(s) = k[R(s)− Y (s)], (2)

yields a closed-loop system given by:

Y (s)

R(s)
=

kG(s)e−τs

1 + kG(s)e−τs
, (3)

where the exponential term e−τs located at the denomina-
tor of the transfer function (3) leads to a system with an
infinite number of poles and where the closed-loop stability
properties must be carefully stated.

This work proposes an observer based control scheme in
order to stabilize a class of systems characterized by:

G(s) =
αe−τs

(s− a)(s− b)(s2 + 2ζωn + ω2
n)

, (4)

where τ ≥ 0, and without loss of generality, a ≥ b > 0.
The parameters ζ and ωn are the damping relation and the
undamped natural frequency respectively. In this paper we
are concerned to the problem when 0 < ζ < 1, i.e. a couple
of complex conjugate poles is present in the system.

The proposed control scheme has been designed taking
into account the traditional observer theory hence only
the plant model and two static gains are enough to get
an adequate estimation of an internal delay free variable
which will be used in the final stabilizing control scheme.

For sake of simplicity, we denote the stable subsystem
Gstb(s) as follows:

Gstb(s) =
α

s2 + 2ζωn + ω2
n

. (5)

3. PRELIMINARY RESULTS

To achieve the goal of this work, we have considered some
preliminary results which are presented in this section.

Lemma 1. Consider the unstable third-order system with
time-delay characterized by:

G(s) =
α

(s− a)(s2 + 2ζωns+ ωn
2)

. (6)

There exists a gain k such that the closed loop system (3)
is stable if and only if

τ <
1

a
−

(
2ζ

ωn

)
.

This result can be demonstrated with an analysis in the
frequency domain. The proof of this result is developed in
Hernandez et al. (2013).

Lemma 2. Consider the unstable high-order delayed sys-
tem (1), with an unstable pole, three stable poles of which
a couple are complex conjugates, given by:

G(s) =
αe−τs

(s− a)(s+ c)(s2 + 2ζωns+ ωn
2)
. (7)

there exist a proportional gain k such that the closed-loop
system (3) is stable if and only if

τ <
1

a
− 1

c
− 2ζ

ωn
.

Proof 1. The proof of this lemma is done in a similar
manner of the one presented in Hernandez et al. (2013).
Consequently, this result can be demonstrated with an
analysis in the frequency domain. From the Nyquist stabil-
ity criteria, the system will be stable iff N +P = 0, where
P is the number of poles in the right half plane “s” and N
the number of rotations to the critical point (−1, j0) point
clockwise (N negative in the counterclockwise direction)
in the Nyquist diagram. Therefore the phase expression in
the frequency domain ω for (7) is given by:
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∠G(jω) = −
(
180◦ − tan−1 ω

a

)
− ωτ · · · (8)

· · · − tan−1 ω

c
− tan−1

 2ζ
(

ω
ωn

)
1−

(
ω
ωn

)2


We can note in this case, as P = 1, there exist a gain k that
stabilizes the system iff N = −1, namely, iff there exists
a counterclockwise rotation to the critical point (−1, 0) in
the Nyquist diagram. To ensure the Nyquist diagram starts
counterclockwise, ∠G(jω) > −180◦ for small frequencies
(ω ≈ 0). Hence, the phase should increase from −180◦ for
frequencies near to 0, and then decrease, and there is one
and only one intersection with the negative real axis in the
anticlockwise for some positive frequency. In order to find
the necessary and sufficient condition for the existence to
obtain a counterclockwise rotation in the Nyquist diagram,
it is possible to derive the expression of phase such that:

d

dw
∠G(jω) = −τ +

a

a2 + ω2
− c

c2 + ω2
· · · (9)

− 2ωnζ(ω + ω2
n)

ω4 + 2ωω2
n(2ζ

2 − 1) + ω4
,

then, for small frequencies (namely ω ≈ 0), the phase
equation must satisfy ∠G(jω) > −180◦, solving for τ , the
stability condition for the system (7) is:

τ <
1

a
− 1

c
− 2ζ

ωn
.

4. MAIN RESULT

Taking into account the class of systems studied in this
work and characterized by the transfer function (4) with
a, b > 0, 0 < ζ < 1, and the time delay τ ≥ 0, and
assuming without loss of generality a ≥ b. An observer
based control is designed in order to obtain an estimation
of the internal states of the system to be used as control
signals for the original process.

As a first step, the stability conditions for the controller
and the observer system are stated separately. This con-
ditions will be used later in order to state the closed
loop stability conditions for the proposed observer based
controller.

4.1 Controller

First, taking into consideration the controller structure
shown in Fig. 1, with the control law u(t) = r(t)−k1w(t)−
k2y(t), let us introduce the following result.

Lemma 3. Consider the delayed system given by (1) and
(4), and the control law mentioned above. There exist
gains k1 and k2 such that the closed-loop system is stable
if and only if

τ <
1

b
− 2ζ

ωn
.

The aim of the foregoing proof is to apply the stability
conditions given in Lemma 2 to the state feedback strategy
shown in the Fig. 1.

Fig. 1. Controller Scheme

Proof 2. Sufficiency. Let us consider a time delay such
that τ < 1

b − (2ζ/ωn). Then, τ = 1
b − (2ζ/ωn) − β, for

some β > 0. Therefore, it is possible to select a k1 such
that β > 1

k1−a > 0. Then, it is easy to determine

τ <
1

b
− 2ζ

ωn
− 1

k1 − a
. (10)

Finally, we can conclude of Lemma 2, assuming c = k1−a,
there exists a gain k2 such that the closed loop plant is
stable.

Necessity. Considering the delayed system 4, and the state
feedback controller shown in Fig. 1, with constant gains
k1 and k2 such that the process is stable. The closed loop
transfer function of the plant can be written as follows:

Y (s)

R(s)
=

αe−τs

(s− b)(s2 + 2ζωns+ ω2
n)(s+ ϕ) + αk2e−τs

,

(11)

with ϕ = k1 − a. It is well known that a k2 that stabilizes
the delayed system (11) must also stabilize the delay free
system (see for instance Niculescu (2001) or Malakhovski
and Mirkin (2006)), which implies that ϕ > 0. Indeed,
from the preliminary results, it is possible to conclude
τ < 1

b −(2ζ/ωn)− 1
ϕ , with ϕ = k1−a, (note that ϕ > 0 is a

free parameter function of k1). Let us consider β > 1
ϕ > 0,

and denoting β = 1
b − (2ζ/ωn)− τ , therefore:

τ =
1

b
− 2ζ

ωn
− β <

1

b
− 2ζ

ωn
.

4.2 Observer

In most of the practical applications, the internal variables
are not measured. Thus, an observer based on an output
injection strategy is proposed. Let us take into consider-
ation the static output injection scheme shown in Fig. 2.
The stability of the observer can be tackled as follows.

Fig. 2. Observer Scheme

Lemma 4. Considering the delayed system given by (1)
and (4), and the static output injection scheme shown in
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Fig. 2, there exist constants g1 and g2 such that the closed-
loop system is stable if and only if

τ <
1

a
− 2ζ

ωn
.

Proof 3. The proof can easily be derived from a dual
procedure of the previous result.

4.3 Observer Based Controller

Finally, the main result of this work is presented; we
propose an observed based controller as in Fig. 3, where
the observer allows to estimate the state variables, to
be used in state feedback controller. It is important to
note that, in the scheme, only four proportional gains
are enough to get a stable closed loop behavior. As a
consequence of the previous results, the following lemma
can be stated.

Fig. 3. Observer-Controller Scheme

Theorem 1. Consider the observer based controller scheme
shown in Fig. 3. There exist proportional gains k1, k2, g1
and g2 such that the closed-loop system is stable if and
only if

τ <
1

a
− 2ζ

ωn
.

Proof 4. Consider a possible state space representation of
the system (4) characterized by the following equation:

ẋ(t) = A0x(t) +A1x(t− τ) +Bu(t) (12)

y(t) = Cx(t),

where the state id defined by [w(t)x1(t)x2(t)z(t)]
T , being

[x1(t)x2(t)]
T the internal states of Gstb(s), and the follow-

ing matrices,

A0 =


a 0 0 0

1 −2 ζ ωn −ω2
n 0

0 1 0 0

0 0 0 b



A1 =


0 0 0 0

0 0 0 0

0 0 0 0

0 0 1 0



B = [ α 0 0 0 ]
T

C = [ 0 0 0 1 ]

Note that the state state representation characterized by
(12) can be returned to its transfer function representation
by means of:

Y (s)

U(s)
= C(sI − (A0 +A1e

−τs))−1B, (13)

which brings us back to the delayed transfer function (4).
The dynamics of the estimated states and the control law
can be described as follows.

˙̂x(t) = A0x̂(t)+A1x̂(t−τ)+Bu(t)−G(Cx̂(t)−y(t)), (14)

where x̂(t) is the estimated state of x(t), and the gain
vectors K and G are defined by

K = [ k1 0 0 · · · 0 k2 ] ,

G = [ g2 0 0 · · · 0 g1 ]
T
.

Let e(t) := x(t)− x̂(t), then we have:

ė(t) = ẋ(t)− ˙̂x(t) = (A0 −GC)e(t) +A1e(t− τ), (15)

and the controlled system:

ẋ(t) = A0x(t) +A1x(t− τ)−BKx̂(t). (16)

Noting xe = [x(t) e(t)]T and after a simple manipulation
of variables we have the following closed loop system with
the observer and the controller proposed in the Fig. 3

ẋe(t) =

[
A0 − BK BK

0 A0 − GC

]
xe(t) +

[
A1 0

0 A1

]
xe(t − τ) (17)

y(t) =
[
C 0

]
xe(t).

It is easy to see that the observer based controller
proposed satisfies the separation principle. Hence, the
stability of the observer scheme is enough to assure an
adequate error convergence, i.e. there exist proportional
gains g1 and g2 such that lim

t→∞
[ŵ(t)−w(t)] = 0 if and only

if

τ <
1

a
− 2ζ

ωn
,

then, considering the fact of the observer and controller
can be designed separately and reminding the stability
conditions stated previously in Lemmas 3 and 4, is clear
that the observer stability condition is more restrictive
than the controller one, namely,

1

a
− 2ζ

ωn
<

1

b
− 2ζ

ωn
,

therefore, there exist k1, k2, g1 and g2 such that the
closed-loop system is stable if and only if
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τ <
1

a
− 2ζ

ωn
.

Remark 1. It is important to note that even if the main
interest of the result is when dealing with linear systems
containing a couple of complex stable poles, the same re-
sult allows to deal with a system with real poles. Assuming
that the parameter ζ > 1, then we have a overdamped
system with two real poles in the left half part of the plane
s. For this case the result holds.

5. EXAMPLE

The proposed approach in this work will be evaluated
by means an academic example in order to illustrate the
performance in the observer-controller scheme.

Consider the delayed high-order systems with two unstable
poles, and a pair of complex conjugate poles characterized
by the following transfer function:

Y (s)

U(s)
=

1

(s− 1.17)(s− 0.5)(s2 + 10.50s+ 29.26)
e−0.2s,

(18)

where τ = 0.2, a = 1.17, b = 0.5, ζ = 0.97 and ωn = 5.40.
It is clear from the system parameters, since:

τ <
1

1.17
−
((

2 ∗ 0.97
5.40

))
= 0.48,

that the stability condition given in Theorem 1 is satisfied,
so this system can be stabilized by means of the observer
based controller proposed in this work.

Since the control scheme holds the separation property
the observer and controller can be designed independently.
Then the following propositions are given in order to
compute the stabilizing gains.

Controller gains

Proposition 1. A simple methodology for choosing the
values for the gains of the controller will be given below.

Step 1. In order to ensure the existence of a proportional
gain k2 such that the closed loop system is stable, from
the proof of Lemma 3, eq.(10) we obtain

k1 >
1

1
b − 2ζ

ωn
− τ

+ a. (19)

It is worth stress that if k1 is selected near to the bound
stated in (19), the gain margin for the gain k2 will be
reduced.

Step 2. Once a gain k1 is selected, we can compute the
gain k2 by means of a frequency domain analysis, Nyquist
stability criterion for instance, for the auxiliary system
(11) such that the controller scheme shown in the Fig.
1 is stable.

In order to illustrate the proposition given above, it is
possible to compute the stability gains region for the
controller of the system (18) for a time delay in the range
0 < τ < 0.48, (Fig. 4).

0 0.1 0.2 0.3 0.4 0.5

0
20

40
60

0

200

400

600

800

1000

1200

1400

1600

1800

2000

τk
1

k 2

Fig. 4. Stabilizing gains k1 and k2 for different delays

Observer gains

Proposition 2. As in the controller design, the computa-
tion of the gains g1 and g2 can be obtained in a dual way
to Remark 1, i.e.,

Step 1. In order to ensure the existence of a proportional
gain g2 such that the closed loop system is stable, from
Lemma 1 we obtain

g1 >
1

( 1a − 2ζ
ωn

− τ)
+ b.

Step 2. Once the gain g1 is selected, we can compute the
gain g2 by means of a frequency domain analysis, Nyquist
stability criterion for instance, such that the controller
scheme shown in Fig. 2 is stable.

It is possible to compute the stability gains region for the
observer of the system (18) for a time delay in the range
0 < τ < 0.48, (Fig. 5).
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g 2

Fig. 5. Stabilizing gains g1 and g2 for different delays

Strategy performance

Taking into account the propositions 1 and 2, the stabi-
lizing gains for this example are chosen as follows: k1 =
21.177, k2 = 35, g1 = 20.5 and g2 = 80. The Fig. 6 il-
lustrate the output performance of the observer-controller
in numerical simulations whit different initial conditions
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ŷ(0) = 0.3. The Fig. 7 show the error between y(t) and
the error e(t) = ŷ(t)− y(t) with ŷ(0) = 0.3.

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Time (s)

O
ut

pu
t s

ig
na

l

Response to a step input

 

 

Initial Conditions y(0)=0.3
Nominal Conditions

Fig. 6. Performance of the closed loop system
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Fig. 7. Error Signal

6. CONCLUSIONS

Unstable systems with time delay usually add complica-
tions for its study, which produces a challenge in the stabi-
lization of the system. An observer-controller is proposed
in this paper in order to stabilize high-order system with
two unstable poles, a couple of complex conjugates poles
and time-delay. The necessary and sufficient conditions are
stated in order to ensure stability of the closed loop system
and the existence of the control scheme. The procedure
for the computation of the constant gains is easy and can
be realized by mean a frequency domain analysis. The
system behavior in closed-loop is illustrated by a numerical
example, where is possible show the performance of the
proposed control strategy. In addition, is illustrates the
behavior of stability regions of the proportional gains,
when the time delay increases.
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