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Abstract: This work proposes a design of a decentralized discrete-time block control scheme,
for a multi-agent system with a fixed topology. The control scheme achieves both formation and
trajectory tracking. Each agent dynamics is represented either by a first-order or second-order
discrete-time system with unknown disturbances.
The position is the only measured variable, the velocity and acceleration are unknown, and only
the agents that are connected with the virtual agent have access to the velocity and acceleration
of the reference. Each agent is provided with discrete-time state observers to calculate the
velocity and acceleration of its neighbors. Also, an estimator for the perturbations is proposed
in order to attenuate them. It is proved that formation and trajectory tracking can be achieved
applying the proposed block control with a consensus scheme.

Keywords: Discrete-time systems, decentralized control, multi-agent systems, state observers,
perturbations estimation.

1. INTRODUCTION

A multi-agent system can be defined as a group of dynam-
ical systems which interact with each other via the states
or the outputs of their neighbors. Besides, this group has
a common goal. Each element of a multi-agent system is
provided with a control and position of its neighbors, in
order to execute common tasks.

Multi-agent systems (MAS ) have attracted considerable
attention in Computer Science and Control Theory in
the last years. The MAS are suitable for cooperative
unmanned vehicles, formation, flocking and traffic con-
trol, transportation systems, power systems networks, and
military applications, among other areas. An important
topic concerning MAS is the problem where a group of
autonomous agents must follow a predefined trajectory
while maintaining a required separation (or formation)
with each other. In multi-agent networks systems, the
consensus means to achieve an agreement on a certain
quantity of interest that depends on the state of all agents.

In the following, a brief description of some works related
to the topic of this work is presented. A theoretical
framework for the analysis of consensus algorithms in MAS
is provided in Olfati-Saber et al. (2007) and Ren and Beard
(2008), where an overview of methods and conditions
for convergence and analysis of consensus algorithms is
presented.

? Carlos López-Limón is supported by CONACYT, grant No.
219300.

The finite-time consensus tracking control for multi-robot
systems or MAS is presented in Hernández-Mendoza et al.
(2011), Khoo et al. (2010) and Khoo et al. (2009). In these
works, Lyapunov functions are proposed to guarantee the
convergence of the sliding surfaces, and the convergence of
the consensus error.

The simultaneous problem of formation and trajectory
tracking of linear MAS is analyzed in Lopez-Limon et al.
(2013a), where a distributed asymptotical control strategy
is proposed.

In Wang et al. (2011), a neighbor-based local control law
and a state-observer rule for discrete-time autonomous
agents are presented. In that work, however, the accel-
eration is supposed to be known for all the agents and it
is focused on first-order agent dynamics.

The design of a control law, based on observation of the
agent’s states, to solve the consensus problem is proposed
in Liu et al. (2009), where the consensus of a MAS discrete-
time model with second-order dynamics is considered.
However, in that work the accelerations must be known
by all the agents.

Protocols for discrete-time consensus tracking considering
time-delays are presented in Yang et al. (2010). That
work focuses on a constant reference state and first-order
dynamics.

Novel protocols and conditions to achieve consensus in
discrete-time MAS with switched and fixed topologies are
introduced in Fanti et al. (2012), Wen and Xiaofan (2012)
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and Han and Chesi (2012). Nevertheless, the reference
tracking problem is not addressed.

All the previously mentioned contributions have important
results but most of the existing results related to MAS
consensus are restricted to agents whose dynamical model
are of the same dimension.

In the present work we focus on the design of a decen-
tralized discrete-time control scheme for MAS, where each
agent dynamics is represented as a first-order or second-
order discrete system. The proposed control law ensures
trajectory tracking, while maintaining a group formation.

The main difference with respect to previous contribu-
tions, and important advantage of our results, is that we
consider the consensus and trajectory tracking of MAS,
where each agent dynamical model can have different state
space dimension. This overcomes previous limitations in
existing results, where all the agents have the same dynam-
ics and/or the same state space dimension. Furthermore,
unknown perturbations are considered.

The proposed control scheme, based on Discrete-time
Block Control, adds the benefits of the sliding modes
to the tracking and observation problem such as finite
time convergence, Lopez-Limon et al. (2013b). In this
work, an observer based on sliding modes techniques,
to observe the velocity and acceleration of each agent
using only the output of its neighbors is also developed.
The observer presents a significant improvement over
traditional methods (Liu et al. (2009), Wang et al. (2011)).

This work is organized as follows. Section 2 presents
the notation and some preliminaries about multi-agent
systems and the discrete-time block control. In Section
3, the problem statement and the control law for the
consensus and trajectory tracking are presented. In Section
4, a simulation example is shown in order to illustrate the
application of the proposed control strategy. Finally, the
conclusions and future work are presented in Section 5.

2. NOTATION AND PRELIMINARIES

This section introduces some basic concepts and notation
about graph theory, communication topologies, consensus
and discrete block control.

2.1 Graph Theory and Communication Topologies

The communication of a group of N mobile agents is
commonly described by a directed graph, G = (V, ξ),
where V = {0, 1, 2, . . . , N} is a set of nodes, ξ ∈ {V ×
V} is a set of edges connecting nodes (self edges are not
allowed). The adjacency matrix associated to G is denoted
by A = [αi,j ] ∈ <N×N . An edge (νi, νj) ∈ ξ means
that node νj can get information from node νi but not
necessarily vice versa, in the edge (νi, νj) the element νi is
the parent node and νj is the child node. For this work, the
node ν0 represents the reference or virtual agent. If an edge
(νi, νj) is contained in ξ, then αj,i = 1 and 0 otherwise.
The set of neighbors of node i at a time t will be denoted
by Ni = {νj : (νj , νi) ∈ ξ, j = 1, . . . , N}.
A directed path is a sequence of edges in a directed graph of
the form (ν0, ν1),(ν1, ν2), . . . , (νi, νj). A cycle is a directed

path that starts and ends at the same node. A directed
tree is a directed graph in which every node has exactly
one parent except for the root node which has no parent
and has a directed path to every other node. A directed
tree has no cycles because every edge is oriented away from
the root. A directed graph G has a directed spanning tree
if and only if G has at least one node with a directed path
to all other nodes.

Note that at least a directed tree is required to achieve
consensus and tracking in a MAS because a directed
path is the only way that all the agents can obtain the
information for the reference, Lafferriere et al. (2005); Ren
and Beard (2008).

The next assumptions are considered in this work:

Hypothesis 1. The graph G incorporates a directed span-
ning tree with root on ν0 (reference) for any communica-
tion topology.

Hypothesis 2. The nodes connected to ν0 known the posi-
tion, velocity and acceleration of the reference.

The consensus is achieved or reached by the states of the
agents if all of them converge to the same value. In this
work the position (x) is the variable for the consensus, i.e.,
for all the agents it is intended that limt→∞ |xi − xj | = 0
and consequently also the velocity (v) achieves consensus
limt→∞ |vi − vj | = 0 ∀i, j = 0, 1, . . . , N .

2.2 Discrete Block Control

The sliding mode control has proved its high accuracy and
robustness with respect to various internal and external
disturbances. The above produces the so called chattering
effect, i.e., dangerous high-frequency vibrations in the
controlled system.

In order to avoid the chattering, there exist many tech-
niques Utkin et al. (1999), and the one that we choose in
this work is the discrete-time block control Sanchez et al.
(2008).

Consider the following discrete-time system that with a
nonsingular transformation, Loukianov et al. (2002); Utkin
and Chang (2002), can be taken into the block controllable
form, which in the particular case of single-input single-
output systems is represented as

x1[k + 1] = a1,1x1[k] + b1x2[k] + d1[k],
x2[k + 1] = a2,1x1[k] + a2,2x2[k] + b2x3[k] + d2[k],

...

xn−1[k + 1] =

n−1∑
i=1

an−1,ix̄i[k] + bn−1xn[k] + dn−1[k],

xn[k + 1] =

n∑
i=1

an,ixi[k] + bnu[k] + dn[k],

y[k] = x1[k], i = 1, 2, . . . , r − 1,

(1)

where x[k] = [x1[k] . . . xn[k]]T is the state vector, u[k] is
the input, a• and b• are constants. The vector function
d[k] = [d1[k] . . . dn[k]]T is a disturbance vector which
satisfies |d[k]− d[k − 1]| ≤ c where c is a constant vector.

Using the transformation zi[k] = xi[k]−xdi [k] , system (1)
can be rewritten as
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z1[k + 1] = L1z1[k] − b1z2[k],
.
..

zn−1[k + 1] = Ln−1zn−1[k] − bn−1zn[k],

zn[k + 1] =

n∑
i=1

an,ixi[k] − bnu[k] + dn[k] − xdn[k + 1],

(2)

where y0[k] = xr1[k] is the desired trajectory to be tracked,
xdi is the desired value for xi (i = 1, 2, . . . , n), and Li is
a constant where |Li| < 1. Using a sliding mode block
control technique, the sliding manifold is SD[k] = zn[k] =
0. Thus, SD[k + 1] =

∑n
i=1 an,ixi[k] − bnu[k] + dn[k] −

xdn[k + 1]. Once the sliding manifold is chosen, the next
step is to define the input u[k] as

u[k] =

ueq[k] for ‖ueq[k]‖ ≤ u0,

u0
ueq[k]

‖ueq[k]‖
for ‖ueq[k]‖ > u0,

(3)

where the equivalent control is calculated from SD[k +
1] = 0 as

ueq[k] = [bn]−1
(
−

n∑
i=1

an,ixi[k]− dn[k] + xdn[k + 1]
)
, (4)

and u0 > |[bn]−1||
(
−xn[k]+xdn[k]+

∑n
i=1 an,ixi[k]+dn[k]−

xdn[k + 1]
)
|.

From Sanchez et al. (2008), we have the next result

Theorem 3. The control law (3) ensures that the sliding
manifold SD[k] = zn[k] = 0 is stable for system (1).

3. PROBLEM DEFINITION

In this work, each agent is represented by a linear discrete-
time system, the dynamics of the second-order agents is
given by

xi[k + 1] = xi[k] + Tsvi[k],
vi[k + 1] = vi[k] + ui[k] + di[k],
yi[k] = xi[k],

(5)

where, for convenience instead of using xi,1 and xi,2 for
the states, xi is the state of position, vi is the state of
velocity, ui is the input, yi is the output, di is an unknown
perturbation and Ts is the sample time. For the function
di it is supposed that |di[k] − di[k − 1]| ≤ dMi

∀k, where
dMi

is a constant.

The first-order agents are also considered for the control
law, and are represented as

xi[k + 1] = xi[k] + ui[k] + di[k],
yi[k] = xi[k],

(6)

and the virtual leader dynamics is given by

x0[k + 1] = x0[k] + Tsv0[k],
v0[k + 1] = v0[k] + Tsa0[k],
y0[k] = x0[k],

(7)

where ai is the acceleration. Note that the systems (5) and
(6) are in the block controllable form (1).

We define the tracking and formation error for the position
as

ei,1[k] =

N∑
j=0

αi,j

(
(xi[k]− xj [k])−∆i,j)

)
, (8)

where ∆i,j is the separation between the outputs of the
agents i and j.

Thus, it is required to design a control law such that a MAS
composed by N agents with system dynamics (5) and/or
(6) achieve formation and trajectory tracking. Considering
the defined error (8) it is required that

lim
t→∞

ei,1[k] = lim
t→∞

N∑
j=0

αi,j (xi[k]− xj [j]−∆i,j) = 0,

∀i = 1, 2 . . . , N.

(9)

3.1 Observer for the neighbors states

The velocity and the acceleration of the neighbors of each
agent are required to calculate an appropriate control law
for trajectory tracking and formation, therefore we need
to design an observer in order to calculate them, the
measurements from the other agents is only the position.

Then, each agent is provided with an observer for each
neighbor. The proposed observer is given by

x̂i[k + 1] = x̂i[k] + Tsv̂i[k],
v̂i[k + 1] = v̂i[k] + Tsâi[k] + wi[k],
ŷi[k] = x̂i[k],

(10)

where x̂i, v̂i and âi are the position, velocity and ac-
celeration, respectively, of the observers. The term wi[k]
is a function introduced to reduce the observer error.
In order to obtain the acceleration âi[k] we define the
equation âi[k + 1] = âi[k] + (âi[k] − âi[k − 1]) where
âi[k] = (1/Ts)(v̂i[k+ 1]− v̂[k]), and finally we have âi[k+
1] = (1/Ts)(2v̂i[k + 1]− 3v̂i[k] + v̂i[k − 1]).

Now, using the following transformation

zo(i,1)[k] = x̂i[k]− xi[k],

zo(i,2)[k] = v̂i[k]− vdi [k],
(11)

to determine the value of vdi [k] we use

zo(i,1)[k + 1] = (x̂i[k] + Tsv̂i[k])− (xi[k] + Tsv̄i[k]),

zo(i,2)[k + 1] = (v̂i[k] + Tsâi[k])− vdi [k + 1] + wi[k],
(12)

where the velocity can be approximated by v̄i[k] = vi[k −
1]+(vi[k−1]−vi[k−2]) and represented in position changes
v̄i[k] = (1/Ts)(3xi[k]− 6xi[k− 1] + 4xi[k− 2]− xi[k− 3]).

It is not possible to calculate vdi [k] and vdi [k + 1] since
we have no access to vi[k], then an approximation v̂di [k] is
required. Now, we select a v̂di [k] such that when v̂i[k] →
v̂di [k] in order to obtain zo(i,1)[k + 1] = 0,

v̂di [k] = (1/Ts)(−x̂i[k] + xi[k] + Tsv̄i[k]),
v̂di [k + 1] = (1/Ts)

(
−(x̂i[k] + Tsv̂i[k])

+(xi[k] + Tsv̄i[k]) + Ts(v̄i[k] + Tsāi[k])
)
,

(13)
where āi[k] = ai[k − 2] + (ai[k − 2] − ai[k − 3]) and
represented in position changes āi[k] = (1/T 2

s )(2xi[k] −
5xi[k − 1] + 4xi[k − 2]− xi[k − 3]).

It is intended that zo(i,2)[k+ 1] = 0, then solving for wi[k]
from (12) we have that

wi[k] = −(v̂i[k] + Tsâi[k]) + v̂di [k + 1]. (14)

Notice that the previous observer is also valid for the first-
order agents.
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3.2 Observation error computation

Now, we calculate the error of the observer for the position
ex̂i when zo(i,1)[k+1] = 0. The position error obtained once
the observer converges is given by

ex̂i[k] = xi[k] − x̂i[k],
= Ts(vi[k − 1] − v̄i[k − 1]),
= Ts((vi[k − 2] + (vi[k − 1] − vi[k − 2]))

−(vi[k − 2] − (vi[k − 2] − vi[k − 3]))),
= Ts((vi[k − 1] − vi[k − 2]) − (vi[k − 2] − vi[k − 3])),

ex̂i[k] = T 2
s δai[k − 2],

(15)
where δai[k − 2] = ai[k − 2] − ai[k − 3], and the position
error is bounded by |ex̂i| ≤ T 2

s max(|δai|).
In order to compute the error of the observer for the
velocity by ev̂i we consider zo(i,2)[k + 1] = 0, when the

observer converges and the velocity is given by v̂di [k], then

ev̂i[k] = vi[k]− v̂di [k],
= vi[k]− (1/Ts)(xi[k]− x̂i[k] + Tsv̄i[k]),
= vi[k]− v̄i[k]− (1/Ts)(xi[k]− x̂i[k]),
= (1/Ts)(ex̂i[k + 1]− ex̂i[k]),

ev̂i[k] = Tsγai[k − 1],

(16)

where γai[k − 1] = δai[k − 1]− δai[k − 2], and the velocity
error is bounded by |ev̂i| ≤ Ts max(|γai|).
Finally, to calculate the error of the observer for the
acceleration we have

eâi[k] = ai[k] − âi[k],
= (2ai[k − 1] − ai[k − 2] + βai[k]) − (1/Ts)(2v̂i[k]

−3v̂i[k − 1] + v̂i[k − 2])),
= (1/Ts)((2vi[k] − 3vi[k − 1] + vi[k − 2]) − (2v̂i[k]

−3v̂i[k − 1] + v̂i[k − 2])) + βai[k],
eâi[k] = (1/Ts)(2ev̂i[k] − 3ev̂i[k − 1] + ev̂i[k − 2]) + βai[k],

(17)

where βai[k] = ai[k] − (2ai[k − 1] − ai[k − 2]), and the
acceleration error is bounded by |eâi| ≤ max(|2γai[k−1]−
3γai[k − 2] + γai[k − 3] + βai[k]|).

3.3 Control design

In order to design the block control for a second-order
dynamics we use the following transformation

zi,1[k] =

N∑
j=0

αi,j

(
(xi[k]− x̂j [k])−∆i,j

)
,

zi,2[k] = vi[k]− vdi [k],

(18)

where ∆i,j is the desired separation between the outputs
of the agents i and j, and

zi,1[k + 1] =

N∑
j=0

αi,j

(
(xi[k] + Tsvi[k] − ∆i,j)) − x̂j [k + 1]

)
.

Now we calculate vdi [k], which is the desired value of vi[k],
to get dynamics as zi,1[k + 1] = Li,1zi,1[k] + zi,2[k] and
zi,2[k + 1] = 0 with |Li,1| < 1.

Define `i =
∑N

j=0 αi,j , then

vdi [k] = (−Ts`i)−1
( N∑
j=0

αi,j((xi[k]− x̂i[k + 1])

−∆i,j)− Li,1zi,1[k])− zi,2[k]
)
,

vdi [k + 1] = (−Ts`i)−1
( N∑
j=0

αi,j(xi[k + 1]− x̂i[k + 1]

−Tsv̂i[k + 1]−∆i,j − Li,1zi,1[k + 1])
)
.
(19)

where, according to Sanchez et al. (2008), zi,2[k] = vi[k]−
(Li,1zi,1[k]− xi[k]).

The following is to determine ui from zi,2[k] on (18), where
we get

zi,2[k + 1] = (vi[k] + ui[k] + di[k])− vdi [k + 1], (20)

and solving for ui from the previous equation we have the
equivalent input

ui,eq[k] = vdi [k + 1]− vi[k]− d̄i[k], (21)

where d̄i[k] = di[k − 1] + (di[k − 1]− di[k − 2]) which can
be rewritten as

d̄i[k] = 2(vi[k]− vi[k − 1]− ui[k − 1])
−(vi[k − 1]− vi[k − 2]− ui[k − 2]).

(22)

Notice that the input (21) is to be applied to agents with
second-order dynamics. Now, for the agents with first-
order dynamics the ui,eq can be obtained from (19), and
the control law results as

ui,eq[k] = −(`i)
−1( N∑

j=0

αi,j((xi[k]−∆i,j)

−x̂i[k + 1]) + `id̄i[k]− Li,1zi,1[k])
)
,

(23)

where d̄i[k] is given by

d̄i[k] = 2(xi[k]− xi[k − 1]− ui[k − 1])
−(xi[k − 1]− xi[k − 2]− xi[k − 2]).

(24)

In general

ui[k] =

{
ui,eq[k] for |ui,eq[k]| ≤ ui,0,

ui,0sign(ui,eq[k]) for |ui,eq[k]| > ui,0,
(25)

where ui,eq[k] is (21) or (23), corresponding to the dynam-
ics of the i− th agent.

The next result presents the conditions to achieve forma-
tion and trajectory tracking for a MAS.

Theorem 4. Consider a set of N discrete agents with first-
order (6) and/or second-order (5) dynamics, and suppose
that the Hypothesis 1 and Hypothesis 2 hold for the
topology communication of the MAS. Then, formation and
trajectory tracking of the MAS is achieved with the control
law ui given by (25).

Proof. The proof is presented in Appendix A at the end
of the paper.

4. EXAMPLE

The following example illustrates the results presented in
the previous section. Consider four agents of second-order
and first-order dynamics. The sampling time is Ts = 0.1
seconds, the bound of the inputs is u0(i) = 2 and the bound
for the acceleration a• < 2, are bounds of the system
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The first three agents are taken as second-order systems
and the fourth agent is a first-order system

The reference function to be tracked is given by

x0[k + 1] = x0[k] + 0.1v0[k],
v0[k + 1] = v0[k] + 0.1a0[k],
y0[k] = x0[k],
a0[k] = − sin(0.1 ∗ k),

(26)

and the unknown perturbations are taken as d1[k] =
−0.1 cos(0.1 ∗ k), d2[k] = −0.1 sin(0.1 ∗ k), d3[k] =
0.1 sin(0.1 ∗ k) and d4[k] = 0.1 cos(0.1 ∗ k).

The agent initial conditions are x1[0] = [−1 0 ]T , x2[k] =
[ 2 0 ]T , x3[k] = [ 1 0 ]T and x4[k] = 4.

Let us define a separation from each agent to the output
of its neighbors, given by the distances ∆1,0 = 0, ∆2,3 = 2,
∆2,4 = −1, ∆3,1 = 1, ∆4,1 = 2 and ∆4,2 = 1. The
separation of each agent is determined by the initial
conditions and the required formation.

Fig. 1. Topology graph that represents the communication
topology.

We choose the constants L1,1 = 0.8, L2,1 = 0.7, L3,1 = 0.7
and L4,1 = 0.6 to impose the desired error dynamics.
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Fig. 2. Output path of each agent with respect to the
reference signal.

5. CONCLUSIONS

In this work, we presented a discrete-time control law
strategy for the formation and trajectory tracking of MAS
with fixed topologies, using a block control scheme.

Each agent can have a discrete-time dynamics representa-
tion with different dimension from the other agents (first-
order or second-order).

The design of an observer to estimate the velocity and
acceleration reduces the communication requirements to
the knowledge of only the position of the agent’s neighbors.
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Fig. 3. Formation and trajectory tracking error of each
agent.

An estimation of the perturbation in the agent dynamics
is designed in order to attenuate the disturbances.

With the proposed control, the error dynamics and the
dynamics of each agent are ensured to be stable.

As future work, the results presented in this paper can
be extended to consider the case of coupled multiple-input
multiple-output discrete-time systems and including the
use of potential fields in order to avoid collisions. Also, it
can be addressed the study of other control techniques in
order to consider a discrete communication with delays.
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Appendix A. PROOF OF THEOREM 4

First, it is necessary to analyze the influence of the
connections in the control applied to the agents of the
MAS. Suppose we have N second-order agents and a
connection represented for an adjacency matrix as

A =



0 0 0 . . . 0 0
1 0 0 . . . 0 0
1 1 0 . . . 0 0
1 1 1 . . . 0 0

...
. . .

...
1 1 1 . . . 1 0

 , (A.1)

where the triangular form represents the communication
topology satisfying (H1) and has the highest possible
number of edges.

Now, for a MAS with an adjacency matrix as (A.1), inputs
(25), and for simplicity ∆i,j = 0 ∀ i, j, we have

z1,1[k] = x1[k]− x0[k],
z1,1[k + 1] = L1,1z1,1[k] + z1,2[k],

z1,2[k] = v1[k]− vd1 [k],
z1,2[k + 1] = 0.

(A.2)

Carrying out the same analysis for the next agent, then

z2,1[k] = (x2[k]− x0[k]) + (x2[k]− x1[k]),
z2,1[k + 1] = (x2[k] + Tsv2[k]− x0[k + 1])

+(x2[k] + Tsv2[k]− x1[k]− Tsvd1 [k]),
z2,1[k + 1] = L2,1z2,1[k] + z2,2[k] + Ts(v̂1[k]− vd1 [k]),

(A.3)
which can be rewritten as

z2,1[k + 1] = L2,1z2,1[k] + z2,2[k] +m2,1z1,1[k] +m2,2z1,2[k]
+h2,0(x0, v0) + h2,1(x̂1, v̂1),

(A.4)
where m2,1,m2,2 are constants and h2,0 and h2,1 are
bounded functions. Continuing with z2,2[k] we have

z2,2[k] = v2[k]− vd2 [k],
z2,2[k + 1] = (d2[k]− d̄2[k]) + h′2,0(v0, a0) + h′2,1(v̂1, â1),

(A.5)
where h′2,0 and h′2,1 are bounded functions. Carrying out
the procedure with all the remaining elements of z we can
construct a triangular matrix as

Fz[k] =



L1,1 1 0 0 . . . 0 0
0 0 0 0 . . . 0 0

m2,1 0 L2,1 0 . . . 0 0
0 m′2,1 0 0 . . . 0 0

...
. . .

...
mN,1 0 mN,2 0 . . . LN,1 1

0 m′N,1 0 m′N,2 . . . 0 0


z[k],

(A.6)
where z = [z1,1[k], z1,2[k], . . . , zN,1[k], zn,2[k]]T and the
complete system can be rewritten as

z[k + 1] = Fz[k] +H(x, v, a) +D(d), (A.7)

where H and D are ultimately bounded vector functions
composed by all the elements h and h′ and the differences
(di[k] − d̄i[k]), respectively. From (A.7) it can be seen
that the stability of the system depends exclusively on
the elements of the diagonal, since F is a lower triangular
matrix. Then, if |Li,1| < 1 ∀ i, the whole discrete-time
system is stable and the formation and trajectory tracking
is achieved.

For the general case, any adjacency matrix A that repre-
sents a communication topology which satisfies Hypotesys
1 can be taken to a lower triangular form because there
are no cycles in G.

The adjacency matrix A can be taken to a lower triangular
matrixA′ with a transformation that interchange rows and
columns, and the stability analysis holds.

The analysis including agents of first-order can be done in
a similar way.
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