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Abstract: In this paper, an Adaptive Super Twisting Control Algorithm (ASTA) is designed
to drive the angular tracking of a Two-Rotor Aerodynamical System. Due to the fixed angle
of attack of the rotor blades, the system is controlled by varying angular rotor speeds, which
introduces highly nonlinear coupling dynamics. With the aim of implementing the ASTA control
and taking into account the difficulties for measuring some of its states, a Super Twisting
Observer (STO) is used to estimate the unmeasured dynamics and external disturbance,
avoiding overestimate the gain. Based on a reduced model of the system, this scheme
increases robustness against external disturbance and unmodeled dynamics. Experimental
results illustrate the performance of the proposed control scheme, under parametric uncertainties
and external disturbance.
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1. INTRODUCTION

Helicopter control has been a difficult task in nonlinear
systems control theory due to the inherent complexity,
high nonlinearity, cross-coupling dynamics and further-
more it is subjected to external disturbances as wind flows
and variations in payload.

Contrary to conventional real-size helicopters (Prouty,
1986), in small setups it is easier to have a propeller with
fixed blade angle and to adjust the aerodynamic force
by manipulating the propeller speed, instead of having a
more complex mechanism as the swashplate. In the Two-
Rotor Aerodynamical System (TRAS) setup (see Fig.1) the
blades of the rotors have a fixed angle of attack, and thus
the voltages that regulates the speeds of the rotors are the
only control inputs. Nonetheless, the fixed angle of attack
of the rotor blades on the TRAS platform adds an extra
coupling caused by the reaction of the force necessary to
change the propeller speed, instead of removing any of the
essential couplings present on a conventional helicopter
that need to be illustrated (see Mullhaupt et al. (1997)
for further details). Additionally, it is considered a non
minimum phase system with unstable zero dynamics.

Control of 2-DOF helicopters has been investigated under
algorithms ranging from linear robust control to nonlin-
ear control domains (Wen and Lu, 2008; Ahmed et al.,
2009). However, even though feedback linearization is an
attractive approach, all the system parameters have to
be known. Besides, feedback linearization needs to be
complemented with adaptive or robust control in case of
uncertainty, where stability becomes a primary target as

uncertainty increases. Furthermore, many mathematical
helicopter models does not describe satisfactorily inter-
axis coupling as gyroscopic effects, whose influence cause a
disturbance usually avoided as it leads to a dependence of
the system on rotary frequency. Although accurate models
can be found, e.g. (Rahideh et al., 2008), whole system
modeling represents a challenging task.
This paper addresses the attitude control of a two-rotor
aerodynamical system setup. With the aim of solving the
attitude control problem, an Adaptive Super Twisting
Control Algorithm is proposed.Furthermore, in order to
implement the proposed controller, necessary information
about unmeasurable states, as well as parametric uncer-
tainties and external disturbances is estimated through
Super Twisting Observers (Fridman et al., 2007).
The layout of this paper is as follows: Section 2 deals with
the problem statement and a system description contain-
ing a mathematical model of a 2-DOF helicopter. In sec-
tion 3, the design of an Adaptive Super-Twisting Control
is addressed. Angular speeds and external disturbance are
estimated by means of Super Twisting Observers designed
in section 4. Experimental results given in section 5 il-
lustrate the effectiveness of the proposed scheme. Finally,
conclusions are drawn.

2. SYSTEM DESCRIPTION

The Two-Rotor Aerodynamical System (TRAS) consists
of a beam pivoted on its base in such a way that it can
rotate freely both in the horizontal (azimuth) and vertical
(pitch) planes. At both ends of the beam there are rotors
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driven by DC motors. A counterbalance arm with a mass
at its end is fixed to the beam at the pivot.

Fig. 1. The two-rotor aerodynamical system.

A reduced mathematical model is obtained when the angle
of attack is small (see Sun et al. (2009)). Furthermore,
when pitch and azimuth angles are decoupled, and taking
into account the dynamics of the rotors, the state space
representation of the 2-DOF helicopter model can be
written as

Σ1 :

{
ẋ1 = Fv + kFvx2,

ẋ2 =
1

Iv
(uv −

1

kHv
x2),

Σ2 :

{
ẋ3 = Fh + kFhx4,

ẋ4 =
1

Ih
(uh −

1

kHh
x4),

(1)

where X = [x1, x2, x3, x4]
T = [θ, ωv, ψ, ωh]

T represents
the state vector of the whole system. Taking into ac-
count the nature of the system, it will be partitioned in
two subsystems as follows: the first subsystem Σ1(θ, ωv)
consists of the big propeller driving the rotation around
horizontal axis. The second subsystem Σ2(ψ, ωh) consists
of the small propeller which drives the rotation around
vertical axis. uh, uv, denote the input voltage supplied to
the tail and main rotors respectively. Moreover, Fv, Fh

are bounded but unknown terms, containing information
about the angular speed. Iv, Ih, represent the moment of
inertia of the rotors, while kHh, kHv represent the velocity
coefficients and kFv, kFh the thrust coeffcients.

Assumption 1. The moments of inertia of the rotors are
neglected with respect to the moments of inertia of the
helicopter (see Lopez-Martinez et al. (2007)).

According to assumption 1, the dynamics of subsystems
(Σ1,Σ2) can be separated into two time scales (Kokotovic
and Khalil, 1986), as follows:
·Slow dynamic refers to the dynamics of the helicopter, i.e.
pitch and azimuth dynamics.
·Fast dynamic represents the actuator dynamics, i.e.
motor-propeller groups.

Then, the 2-DOF helicopter model (1) can be represented
by the following MIMO singular perturbed interconnected
system

χ̇i = Fi + hiζi, (2a)

µiζ̇i = h̄iζi + ui, i = 1, 2, (2b)

where χi represents the state vector of the slow subsystems
(2.a) such as χ1 = θ, χ2 = ψ, while ζ1 = ωv and ζ2 = ωh

correspond to the state vector of the fast subsystem (2.b)
with µ1 = Iv, µ2 = Ih. Besides, u1 = uv, u2 = uh,
F1 = Fv, F2 = Fh, h1 = kFv, h2 = kFh, h̄1 = −1/kHv,
and h̄2 = −1/kHh.

Taking into account the magnitude of the moment of
inertia of the rotors, whose experimental values satisfy
µi << 1, i = 1, 2; several methods can be applied to reduce
the order of the model. For that, the following assumption
is introduced:

Assumption 2. The generated thrust can be considered
smooth, having as the dominant forces on the dynamics
the aerodynamics effects instead of the inertial forces.

Under this assumption the rotor speeds are supposed to
be constants. By applying the classic quasi-steady-state
approach (Saksena et al., 1984), µi can be considered
as zero in the fast dynamic subsystem (2.b). Then, it
follows that 0 = h̄iζi + ui, for i = 1, 2. Solving for ζi
and substituting in (2.a), we obtain the Slow dynamics,

Σi : {χ̇i = Fi + biui, i = 1, 2, (3)

where b1 = h1h̄1, b2 = h2h̄2 and Fi(·) include dynam-
ics, parametric uncertainties and external disturbances
lumped together, for each subsystem. ui represents the
motor voltage input, while bi are positive constants. Due
to parameters variations and uncertainties, model (3) rep-
resents an approximation of the behavior of the whole
system.

The angles (x1, x4) will be hereafter considered as the
measurable outputs. Angular velocities (x2, x5), are as-
sumed to be unmeasurable, and terms Fi, for i = 1, 2;
are unknown. Thus, in order to implement the proposed
control laws, angular velocities and terms Fi, i = 1, 2; will
be estimated through super twisting observers.

3. ADAPTIVE SUPER-TWISTING ALGORITHM

In this section, the synthesis of a control law able to track
a desired angular reference (θd, ψd), is addressed. The
proposed controller is based on an adaptive super-twisting
control algorithm, which has been presented in (Shtessel
et al., 2012). The main advantage of such algorithm is
that it combines the advantage of chattering reduction
and the robustness of high order sliding mode approach.
The controller designed ensure its convergence in a finite-
time and the robustness of the system under uncertainties,
where the bounds of the uncertainties are not required to
be known.
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Now, consider the super-twisting control algorithm (Lev-
ant, 2003), which is given by

u=−K1|s|
1/2sign(s) + υ,

υ̇ =−K2sign(s), (4)

where u represents the control signal, K1,K2 are the
control gains and s is a sliding variable.

According to adaptive super-twisting algorithm (ASTA)
approach, the gains K1 and K2 are chosen such that they
are functions of the sliding surface dynamics as follows

K1 = K1(t, s, ṡ), K2 = K2(t, s, ṡ). (5)

Now, in order to design an adaptive super-twisting control
for the uncertain nonlinear system

ẋ = f(x, t) + g(x, t)u, (6)

where x ∈ �n is the state, u ∈ � the control input,
f(x, t) ∈ �n is a continuous function.

Next, we introduce the following assumptions

Assumption 3. The sliding variable s = s(x, t) ∈ � is
designed so that the desired compensated dynamics of the
system (6) are achieved in the sliding mode s = s(x, t) = 0.

Assumption 4. The relative degree of the sliding variable
s, is equal to 1 and the internal dynamics are stable.

Then, the dynamics of the sliding variable s are given by

ṡ = a(x, t) + b(x, t)u. (7)

where a(x, t) = ∂s
∂t +

∂s
∂xf(x, t) and b(x, t) =

∂s
∂xg(x).

Assumption 5. The function b(x, t) ∈ � is unknown
and different from zero ∀x and t ∈ [0,∞). Furthermore,
b(x, t) = b0(x, t) + ∆b(x, t), where b0(x, t) is the nominal
part of b(x, t) which is known, and there exists γ1 an
unknown positive constant such that ∆b(x, t) satisfies∣∣∣∣∆b(x, t)b0(x, t)

∣∣∣∣ ≤ γ1.

Assumption 6. There exist δ1, δ2 unknown positive con-
stants such that the function a(x, t) and its derivative are
bounded

|a(x, t)| ≤ δ1|s|
1/2, |ȧ(x, t)| ≤ δ2. (8)

The objective of ASTA approach is to design a continuous
control without overestimating the gain, to drive the slid-
ing variable s and its derivative ṡ to zero in finite time,
under bounded additive and multiplicative disturbances
with unknown bounds γ1, δ1 and δ2.

Then, the closed loop system (7) becomes

ṡ= a(x, t)−K1b(x, t)|s|
1/2sign(s) + b(x, t)υ,

υ̇ =−K2sign(s), (9)

Now, consider the following change of variable

ς = (ς1, ς2)
T = (|s|

1/2
sign(s), b(x, t)υ + a(x, t))T . (10)

Then, the system (9) can be written as

ς̇ = Ã(ς1)ς + g̃(ς1)
̄(x, t), (11)

where

Ã(ς1) =
1

2 |ς1|

(
−2b(x, t)K1 1
−2b(x, t)K2 0

)
, g̃(ς1) =

(
0
1

)

and 
̄(x, t) = ḃ(x, t)υ + ȧ(x, t) = 2
(x, t) ς1
|ς1|

.

To prove the closed loop stability of the system,

Assumption 7. ḃ(x, t)υ is bounded with unknown bound-

ary δ3, i.e. | ḃ(x, t)υ |< δ3.

Then, system (11) can be rewritten as follows

ς̇ = Ā(ς1)ς, Ā(ς1) =
−1

|ς1|

(
b(x, t)K1 −

1

2
b(x, t)K2 − 
(x, t) 0

)

(12)

where |ς1| = |s|
1/2

, it is appealing to consider the quadratic
function

V0 = ςT P̃ ς, (13)

where P̃ is a constant, symmetric and positive matrix, as
a strict Lyapunov candidate function for (4). Taking its
derivative along the trajectories of (12), we have

V̇0 = − |s|
−1/2

ςT Q̃ς, (14)

almost everywhere, where P̃ and Q̃ are related by the
Algebraic Lyapunov Equation

ĀT P̃ + P̃ Ā = −Q̃. (15)

Since Ā is Hurwitz if b(x, t)K1 > 0, 2b(x, t)K2 + 2
(x, t) >

0, for every Q̃ = Q̃T > 0, there exist a unique solution
P̃ = P̃T > 0 for (15), so that V0 is a strict Lyapunov
function.

Remark 1. The stability of the equilibrium ς = 0 of (12)
is completely determined by the stability of the matrix Ā.
However, classical versions of Lyapunov ’s theorem (Fil-
ippov, 1988) cannot be used since they require a continu-
ously differentiable, or at least locally Lipschitz continuous
Lyapunov function, though V0 (13) is continuous but not
locally Lipschitz. Nonetheless, as it is explained in Theo-
rem 1 in (Moreno and Osorio, 2012), it is possible to show
the convergence properties by means of Zubov ’s theorem
(Pozniak, 2008), that requires only continuous Lyapunov
functions. This argument is valid in all the proofs of the
present paper, so that no further discussion of these issues
will be required.

From Assumption 6 and 7, it follows that

0 < 
(x, t) < δ2 + δ3 = δ4.

Notice that, while ς1 and ς2 converge to 0 in finite time, it
follows that s and ṡ converge to 0 in finite time, too.
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The control design based on ASTA approach is formulated
in the following theorem

Theorem 1. (Shtessel et al., 2012) Consider the system
(6) in closed-loop with the control (4), expressed in terms
of the sliding variable dynamics (7). Furthermore, the
assumptions 3 − 7 for unknown gains γ1, δ1, δ2 > 0 are
satisfied. Then, for given initial conditions x(0) and s(0),
there exists a finite time tF > 0 and a parameter ι, as soon
as the condition

K1 >
(λ+ 4ε∗)

2 + 4δ2
4
+ 4δ4(λ− 4ε2∗)

16ε∗λ
,

holds, if |s(0)| > ι, so that a real 2-sliding mode, i.e.
|s| ≤ η1 and |ṡ| ≤ η2, is established ∀t ≥ tF , under the
action of Adaptive Super-Twisting Control Algorithm (4)
with the adaptive gains

K̇1 =


 ω1

√
γ1
2
sign(|s| − ι), if K1 > K∗,

K∗, if K1 ≤ K∗,
K2 = 2ε∗K1,

(16)

where ε∗, λ, γ1, ω1, ι are arbitrary positive constants, K∗ a
small positive constant, η1 ≥ ι and η2 > 0. �

Notice that, according to subsystems (3), the sliding
surface for the control (4)-(5) is defined as

σ =

[
σ1
σ2

]
=

[
χ1 − θd(t)

χ2 − ψd(t)

]
, (17)

whose time derivatives are given by

σ̇ =

(
F1 − θ̇d(t) + b1v1

F2 − ψ̇d(t) + b2v2

)
=

(
a1 + b1v1

a2 + b2v2

)
, (18)

where (θd(t), ψd(t)) are the desired trajectories and (v1, v2)
the control inputs defined according to (4)-(16).

However, to implement the proposed controller, it is neces-
sary to know the values from the unknown dynamics of Fi,
for i=1,2. Then, to overcome this difficulty, the estimation
of unmeasured terms will be addressed in next section.

4. SUPER TWISTING OBSERVER

Let us consider a SISO nonlinear system in triangular
observable form:

ẋ1 = x2
...

ẋn−1 = xn

ẋn = f(x) + g(x)u (19)

where x = [x1, . . . , xn]
T ∈ �n is the state vector, y = x1

∈ � is the output vector and u ∈ � is the unknown input.
f(x) and g(x) are bounded smooth scalar functions. It is
assumed that the state of the system is uniformly bounded,
i.e. for all t > 0, | xi(t) |< di, and that for all t > 0:

| f(x) |<C1, | ḟ(x) |<, C̄1

| g(x) |<C2, | ġ(x) |< C̄2,

| u |<C3, | u̇ |< C̄3,

where Ci and C̄i are some know positive scalars. Let us
design the following observer proposed by (Floquet and
Barbot, 2007)

˙̂x1 = x̃2 +G1 | e1 |1/2 sign(e1)

˙̃x2 = g1sign(e1)

˙̂x2 =E1

[
x̃3 +G2 | e2 |1/2 sign(e2)

]
...

˙̃xn−1 =En−3gn−2sign(en−2)

˙̂xn−1 =En−2

[
x̃n +Gn−1 | en−1 |1/2 sign(en−1)

]
˙̃xn =En−2gn−1sign(en−1)

˙̂xn =En−1

[
Λ +Gn | en |1/2 sign(en)

]
˙̃Λ =En−1gnsign(en) (20)

where, ei = x̃i − x̂i for i = 1, . . . , n with x̃1 = x1 and
[x̃, Λ̃]T = [x̃1, 2̃, . . . , ñ, Λ̃]

T is the output of the observer.
For i = 1, . . . , n− 1, the scalar functions Ei are defined as

Ei =

{
1, if | ej |=| x̃j − x̂j |,≤ ε0
0, if | ej |> ε0,

(21)

where ε0 is a small positive constant. The observer gains
Gi and gi are positive scalars.

Proposition 1. Consider the system (1) can be written
as in (3), and consider that Assumptions 1-2 are satisfied
for each subsystem. Then, under these assumptions, sys-
tem (3) in closed-loop with the adaptive super-twisting
controller (4)-(5), using the estimates obtained by the
differentiator (20), guarantees that the trajectories of the
system (1) converge in finite-time to the reference signal
(θ∗, ψ∗).

Remark 2: Since the observer converges in finite-time,
the control law and the observer can be designed sep-
arately, i.e., the separation principle is satisfied. Thus
if the controller is known to stabilize the process then
the stabilization of the system in closed-loop is assured
whenever the super twisting observer dynamics are fast
enough to provide an exact evaluation of the modes σ, σ̇.

5. EXPERIMENTAL RESULTS

In this section, experimental results carried out on the
TRAS platform (Fig. 1) are provided to illustrate the
feasibility of the proposed methodology.

Control scheme algorithms were developed in the MAT-
LAB/Simulink environment, while the associated exe-
cutable code was automatically generated by the RTW
environment, with a sampling time of 0.01s (for more
information see Anon1 (2006)). Controller and observer
parameters are displayed in the Tables 1-2. Furthermore,
a Cross PID was also considered for a comparative study.

5.1 Nominal case (E1).

For nominal case, the reference to be tracked consists of
a sinusoidal signal of amplitude 0.2 rad and frequency of
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ωi λi ιi γi ε∗i
Pitch 0.1 1 0.1 0.1 0.1

Azimuth 0.1 3 0.1 0.1 0.1

Table 1. ASTA control parameters.

Gi1 Gi2 Gi3 gi1 gi2 gi3
Pitch 50 450 750 4000 10 10

Azimuth 50 150 500 1000 10 10

Table 2. STO parameters.

0 10 20 30 40 50 60 70 80 90

−0.6

−0.4

−0.2

0

0.2

Reference
ASTA
Cross−PID

0 10 20 30 40 50 60 70 80 90
−1

−0.5

0

0.5

time (sec)

Reference
ASTA
Cross−PID

Fig. 2. E1 - Responses. (Top) Pitch, (Bottom) Azimuth.

Angle Control MSE IAE ITAE ‖u‖
2

Pitch ASTA 0.009 262.33 4267.98 24.25

Cross-PID 0.009 446.33 14126.22 43.56

Azimuth ASTA 0.04 908.84 41075.95 27.33

Cross-PID 0.03 760.66 36919.34 17.17

Table 3. Nominal case performance.

1/60Hz for pitch angle. On the other hand, for azimuth
angle a square reference of amplitude 0.4 rad and a
frequency of 1/50Hz has been chosen.

Figure 2 shows plots of the angular responses, it can be
seen that both controllers rejected cross-coupling, having
a better response the proposed scheme. In the Figure
3, can be seen the control signals applied to rotors by
the ASTA and Cross-PID controllers. Control signals are
normalized and takes values between the range [-1, +1]
corresponding to the input voltage range [-24V, +24V].
Furthermore, the control signals have been saturated in
the interval [0.2, 1] for pitch control and [-0.3, 0.3] for
azimuth control, by recommendation of the manufacturer
to avoid any damage into the platform. Additionally,
adaptation of super-twisting control gain is presented in
the Figure 4. A performance comparison between both
controllers according to several indexes can be seen in the
Table 3, last column on the right illustrate the control
effort.

5.2 Extra mass case (E2).

With the aim of testing the robustness of the proposed
scheme, an extra mass of 25% has been attached to
the main rotor at 20 seconds after the beginning of the
experiments.

0 10 20 30 40 50 60 70 80 90

0.2

0.4

0.6

0.8

1 ASTA
Cross−PID

0 10 20 30 40 50 60 70 80 90
−0.4

−0.2

0

0.2

0.4

time (sec)

ASTA
Cross−PID

Fig. 3. E1 - Control signals. (Top) Pitch control, (Bottom)
Azimuth control.

0 10 20 30 40 50 60 70 80 90
0.5

1

1.5

2

2.5

3

0 10 20 30 40 50 60 70 80 90
0

5

10

15

20

25

Fig. 4. E1 - Adaptive gains. (Top) Pitch gain. (Bottom)
Azimuth gain.

0 10 20 30 40 50 60 70 80 90

−0.6

−0.4

−0.2

0

0.2

Reference
ASTA
Cross−PID

0 10 20 30 40 50 60 70 80 90

−0.5

0

0.5

time (sec)

Reference
ASTA
Cross−PID

Fig. 5. E2 - Responses. (Top) Pitch, (Bottom) Azimuth.

Angular plots under for extra mass are shown in Figure
5. ASTA scheme kept good tracking along the experiment.
However, as ASTA azimuth control signal reached the sat-
uration level, reference tracking was slower. On the other
hand, Cross-PID was unable to handle mass increment.
Extra mass increase power demand, as can be seen in
Figure 6. Adaptive gains help to reject the perturbation
applied, Figure 7 shows their behavior. Table 4 illustrates
several performance indexes for extra mass case.
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0 10 20 30 40 50 60 70 80 90

0.2
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0.8

1

ASTA
Cross−PID

0 10 20 30 40 50 60 70 80 90
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0
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0.4
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ASTA
Cross−PID

Fig. 6. E2 - Control signals. (Top) Pitch control, (Bottom)
Azimuth control.

0 10 20 30 40 50 60 70 80 90
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2
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0 10 20 30 40 50 60 70 80 90
0

5

10

15

20

25

Fig. 7. E2 - Adaptive gains. (Top) Pitch gain, (Bottom)
Azimuth gain.

Angle Control MSE IAE ITAE ‖u‖
2

Pitch ASTA 0.011 363.85 8324.40 69.12

Cross-PID 0.067 1947.91 89474.44 50.11

Azimuth ASTA 0.127 1802.89 92926.46 27.53

Cross-PID 0.031 842.70 40080.06 18.81

Table 4. Extra mass case performance.

6. CONCLUSIONS

An adaptive super-twisting algorithm for a two degrees
of freedom helicopter platform has been designed. With
the aim of implementing the proposed controller, a super
twisting observer was designed for estimating the unmea-
surable states as well as external disturbances. The pro-
posed scheme has been compared with a Cross PID con-
troller, demonstrating a better performance when facing
external disturbances. Experimental results illustrated the
robustness and the efficiency of the proposed methodology.
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