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Abstract— A decentralized feedback controller design is
presented in this paper for wide-area interconnected power
systems. The key feature is a simple methodology to tune the
controller’s parameters and to assure the synchronization of
the power machines and the tracking of a constant reference
via some error equations.
The controller is tested in a two-area nonlinear interconnected
power system and shows robustness to the effect of delays
induced by the length of the transmission lines. Simulation
results illustrate the viability of the proposed scheme.
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I. INTRODUCTION

Recently, the deregulation of power industry and the
increasing demand of electricity have led to operate net-
works near to their transfer power limits. As a consequence,
several modes of inter-area oscillations, which cannot be
easily damped by traditional methods, have been detected
(Chang y Xu, 2007).
Different Interconnected Power Systems (IPS) models and
control techniques have been proposed to overcome the
aforementioned problem. One of them, the use of remote
signals from wide-area measurement systems (WAMS), has
become an interesting alternative despite the high cost of the
equipment (Ivanescu et al., 2000; Snyder et al., 2000). The
major problem involved with this technology is the delay
between the instant of measurement and that of the signals
being available for the controller, which is in the range of
100-700 ms. depending on the communication links and
other characteristics (Naduvathuparambil et al., 2002). This
has increased the attention to the overall effect of time
delays in IPS and its crucial impact on the stability analysis
(Jia et al., 2008; Wu et al., 2004).
Another delay, related to the length of the transmission
lines, has been identified. However, it is usually ignored
in practice due to its magnitude (less than 10 ms) (Wu y
GT, 2003).
In (Kamwa et al., 2001) and (Dou et al., 2007) decentral-

ized controllers for large IPS networks using the so-called
hierarchical/decentralized architecture and a Takagi-Sugeno
fuzzy model, respectively, have been proposed, without
considering any WAMS delay.
The main contribution of this paper is a simple methodology
to tune the parameters of a decentralized feedback controller
and to assure the synchronization of the power machines
and the tracking of a constant reference via some error
equations. This solution is less costly and complex than
standard WAMS-based ones.
The structure is organized as follows: Section II presents
the nonlinear power system model with and without the
inclusion of time delays, as well as preliminary definitions.
The problem statement is the subject of Section III. The
controller design and main results are shown in Section IV.
Finally Section V concludes the paper.

II. NETWORK MODEL

A. Interconnected power systems model

Under some standard assumptions, the dynamics of N
interconnected generators can be described by the classical
model with flux decay dynamics. The network has been
reduced to internal bus representation assuming the loads
to be constant impedances. Furthermore, in practical power
systems, line conductances Gij can be neglected with
respect to line susceptance Bij (Gij ¿ Bij). The dynamical
model of the i-th machine without communication delays
is represented by (Pai, 1989)

δ̇i(t)=ωi(t)− ωs (1)

ω̇i(t)=
ωs

2Hi
[Pmi−E′

qi
(t)Iqi(t)−Di(ωi(t)−ωs)]

Ė
′
qi

(t)=
1

T ′di

[Efi(t)−E′
qi

(t)−(Xdi−X ′
di

)Idi(t)]

where
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Iqi
(t)=

N∑

j=1

j 6=i

E′
qj

(t)Bij sin(δi(t)− δj(t))

Idi
(t)=−

N∑

j=1

j 6=i

E′
qj

(t)Bij cos(δi(t)− δj(t))

Iqi
(t) and Idi

(t) represent the currents in the d-q reference
frame of the i-th generator,
E′

qi
(t) is the transient EMF in the quadrature axis,

Eqi
(t) is the EMF in the quadrature axis,

Efi(t) is the equivalent EMF in the excitation coil,
Pei

and Qei
are the active and reactive power, respectively,

δi(t) is the machine rotor angle with respect to a
synchronously rotating frame, in radians, and
ωi(t) represents the rotor speed.

Furthermore, the state of the i-th system (1) is
represented by Xi = [δi(t), ωi(t), E

′
qi(t)]

T ∈ IR3 for
i = 1, .., N , while the system input ui(t) ∈ IR is Efi(t).

It is worthwhile pointing out that the accurate modelling
of real generators may need more than three, say five or
seven, differential equations. However, those extra equations
only specify the dynamic behavior with respect to the very
small time constant of the system, which has been proven
to be negligible for designing a power system controller.
The elementary model (1) includes only the slow dynamic
behavior associated to the mechanical variables. The addi-
tional equations describing the faster electrical dynamics are
ignored since they are reduced to purely algebraic equations
(Pal y Chaudhuri, 2005).

Taking into account the communication delays, the fol-
lowing model is proposed for the state representation of the
i-th machine with excitation control. It can be written as

δ̇i(t)=ωi(t)− ωs

ω̇i(t)=−ai(ωi(t)− ωs) + bi − ciE
′
qi

(t) (2)
N∑

j=1

j 6=i

[E′
qj

(t−τij)Bij sin(δi(t)−δj(t−τij))]

Ė
′
qi

(t)=ui(·)− eiE
′
qi

(t) + di

N∑

j=1

j 6=i

[E′
qj

(t−τij)Bij cos(δi(t)−δj(t−τij))]

where ai =
Di

2Hi
, bi =

ωsPmi

2Hi
, ci =

ωs

2Hi
,

di =
(Xdi −X

′
di

)
T
′
di

, ei =
1

T
′
di

, are the system parameters,

ui(t) = eiEfi(t) is the control input and τij are the delays
inherent to the transmission lines.

Note that the model (2) in open loop does not involve
the delay due to WAMS. The variables of the machine j
are delayed due to the communication channel. However
standard controllers require their value at present time. The
common solution is to design a predictor to determine them,
see for example (Chaudhuri et al., 2004; Mohagheghi et
al., 2007), but it causes an extra effort in terms of time
computation, equipment and depending on the number of
variables to reconstruct.

The equilibrium points of systems (1) and (2) satisfy the
following conditions

ω∗i = ωs

bi = ciE
′∗
qi

N∑

j=1

j 6=i

(E
′∗
qj

Bij sin(δ∗i − δ∗j ))

ūi = eiE
′∗
qi
− di

N∑

j=1

j 6=i

(E
′∗
qj

Bij cos(δ∗i − δ∗j )).

Given an operating point (δ∗i , ωs, E
′∗
qi

), one can insert the
constant excitation control ūi or vice-verse.

In power systems, two machines are said to be
synchronized if their angles keep swinging together
into pre-defined limits. The following definition is used
throughout this paper.

Synchronization (Alberto y Bretas, 1999). The solutions
δi(t) and δj(t) are considered in synchronism if, for each
real number L0 > 0, there exists a real number L > 0 such
that for every initial condition δi(t0) and δj(t0) satisfying
‖ δi(t0) − δj(t0) ‖< L0, the solutions δi(t) and δj(t)
satisfy the inequality ‖ δi(t)− δj(t) ‖< L for all t > t0.

It is clear from previous definition that the synchronism
property does not guarantee the stability. A system can be
synchronized and yet be unstable. Now, we can define the
problem statement, which is done in the following section.

III. PROBLEM STATEMENT

Let consider a network which consists of three generators
modeled each one by (2). For each system, the equivalent
EMF in the excitation coil Efi is the available control input.
The problem is to design a causal controller to stabilize the
error signal e(t) = δ1(t)− δ2(t).
Causality of the control law is meant for using only the
available delayed data, in other words, the signal depends
of the state at present and past values of the time only. This
problem will be solved in the next section.
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IV. CONTROL DESIGN

In this section, constructive conditions under which a
linear decentralized state feedback that solves the stability
problem stated in section III exists. Since only local states
are used, there is no time delay involved and no state
predictors are required.

A. Controller design procedure

In this section, a control design procedure that
leads to a decentralized stabilizing control will be
described. Generator No. 3 is an infinite bus, we have
E
′
q3

= constant = 1∠0◦. The steps are the following:

1. Linearization.
Linearizing around an equilibrium point (δ∗i =
δ∗, ω∗i , E

′∗
qi

, ūi) for i = {1, 2}.

ẋi,1 = xi,2

ẋi,2 = pixi,1 − aixi,2 + qixi,3 + sijxj,1 (3)
ẋi,3 = rixi,1 − eixi,3 + diBijxj,3 + ui

with
[
xi,1 xi,2 xi,3

]T =
[
δi, ωi, E

′
qi

]T
and

pi = −ciE
′∗
qi

[(E
′∗
qj

Bij) + BiN cos(δ∗)]
qi = −ciBiN sin(δ∗)
ri = −diBiN sin(δ∗)

sij = ciE
′∗
qi

E
′∗
qj

Bij

for i = {1, 2}. The index j is defined as a function of i:

i j
1 2
2 1

2. Transformation into canonical form.
The matrix A of (3) and their controllability matrix are of
rank 6. Then there exists a transformation of the form (see
(Luenberger, 1967) for details)

zi,1 =
1
qi

xi,1

zi,2 =
1
qi

xi,2 (4)

zi,3 =
pi

qi
xi,1 − ai

qi
xi,2 + xi,3 +

sjiBjN

qjBiN
xj,1

for i = {1, 2}, which allows to write the state equations in
canonical form

żi,1 =zi,2

żi,2 =zi,3 (5)
żi,3 = p̄izi,1 + q̄izi,2 + r̄izi,3 + [s̄izj,1 + v̄izj,2 + w̄izj,3]

+ui

with

p̄i = −cidiE
′
qi

E
′
qj

Bij
2Bi3

Bj3
+ cidi sin(δ)2Bi3

2

−ci cos(δ)eiE
′
qi

Bi3 − cieiE
′
qi

E
′
qj

Bij

q̄i = −ci cos(δ)E
′
qi

Bi3 − ciE
′
qi

E
′
qj

Bij − aiei

r̄i = −ei − ai

s̄i =
cjeiE

′
qi

E
′
qj

BijBj3

Bi3
+ cjdiE

′
qi

E
′
qj

Bij
2

+cjdi cos(δ)E
′
qj

BijBj3

v̄i =
cjE

′
qi

E
′
qj

BijBj3

Bi3
+ ajdiBij

w̄i = diBij

for i = {1, 2}.
3. Definition of error equations

e = z1 − z4 = y1 − y2 (6)
ε = z1 = y1 (7)

to assure synchronization of the rotor angles and stabiliza-
tion.
Differentiating (6) and (7) under the trajectories of (5) we
get

e(3)(t)=(p̄1 − s̄2)y1+(q̄1 − v̄2)ẏ1+(r̄1 − ω̄2)ÿ1

+(s̄1 − p̄2)y2+(v̄1 − q̄2)ẏ2 + (ω̄1 − r̄2)ÿ2

+u1 − u2 (8)
ε(3)(t)= p̄1y1 + q̄1ẏ1 + r̄1ÿ1 + s̄1y2 + v̄1ẏ2

+ω̄1ÿ2 + u1 (9)

4. System stabilization.
A decentralized controller is designed. It means that only

the local data of each generator will be used, without the
WAMS. To find sufficient conditions under which such
controller exists, define

P1 = r̄1 − ω̄2 + k13

Q1 = q̄1 − v̄2 + k12q1 + a1k13 (10)

V1 = p̄1−s̄2−p1k13+k11q1− k23s1B13

B23

P2 = p̄1−p1k13+k11q1+s̄1+
k13s2B23

B13

Q2 = q̄1 + k12q1 + a1k13 + v̄1

V2 = r̄1 + k13 + ω̄1

Proposition 1. Consider System (2). If there exist param-
eters k11, k12, k13 such that the inequalities

Pi < 0,

Qi < 0,

Vi < 0, (11)
PiQi > −Vi, for i = 1, 2.
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with Pi, Qi, Vi defined by (10). Then the controller

ui = ki1(xi,1 − x∗i,1) + ki2(xi,2 − x∗i,2) (12)
+ki3(xi,3 − x∗i,3); for i = {1, 2},

stabilizes the system.

Proof.
Considering the linearized system (3), the equilibrium point
is the origin. Thus, the control input (12) becomes:

ui = ki1xi,1 + ki2xi,2 + ki3xi,3 (13)

Applying the transformation x(t) = T−1z(t), inverse of
(4), the inputs u1 and u2 are of the form

u1 = (−p1k13 + k11q1)z1 + (k12q1 + a1k13)z2

+k13z3 +
k13s2B23

B13
z4 (14)

u2 =
k23s1B13

B23
z1 + (−p2k23 + k21q2)z4

+(k22q2 + a2k23)z5 + k23z6.

This is done to work with system (5). Now, the parame-
ters kil must be assigned to transform (8) and (9) into error
equations as follows:

e(3)(t)=(p̄1−s̄2−p1k13+k11q1− k23s1B13

B23
)y1

+(q̄1−v̄2+k12q1+a1k13)ẏ1 + (r̄1−ω̄2+k13)ÿ1

+(s̄1−p̄2+
k13s2B23

B13
+p2k23−k21q2)y2 (15)

+(v̄1−q̄2−(k22q2+a2k23))ẏ2 + (ω̄1−r̄2−k23)ÿ2

and

ε(3)(t)=(p̄1 − p1k13 + k11q1)y1 (16)
+(q̄1+k12q1+a1k13)ẏ1+(r̄1+k13)ÿ1

+(s̄1 +
k13s2B23

B13
)y2 + v̄1ẏ2 + ω̄1ÿ2.

From (15), assigning k21, k22 and k23, then

e(3)(t) = P1ë + Q1ė + V1. (17)

TABLE I
PARAMETERS, DESCRIPTION AND VALUES.

NOTATION DESCRIPTION VALUES
Machine 1 Machine 2

Xdi Direct axis reactance.* 1.863 2.36
X
′
di Direct axis transient reactance.* 0.257 0.319

Di Damping factor.* 5 3
Hi Inertia constant, in seconds. 4 5.1
T
′
di Direct axis transient short circuit time constant, in seconds. 6.9 7.96

ωs Synchronous machine speed, in rad/s. 120π 120π

Bij

Element of the i-th row and j-th column of the nodal
susceptance matrix, which is symmetric; at the internal nodes
after eliminating all physical buses.*

[
Bij

]
=



−1.4187 0.3296 1.0891
0.3296 −1.3040 0.9744
1.0891 0.9744 −2.0635




* All parameters are in p.u..

from inequalities (11) it can be proved that (17) is asymp-
totically stable using the results from (Cahlon y Schmidt,
2006). Then, we have that

y1 = y2,

and (16) becomes

ε(3)(t) = P2ε̈ + Q2ε̇ + V2ε. (18)

Now, using the error equations (6) and (7) one defines a
change of coordinates such that

d

dt




e(t)
ė(t)
ë(t)
ε(t)
ε̇(t)
ε̈(t)



=




ė(t)
ë(t)

l1e(t) + l2ė(t) + l3ë(t)
ε̇(t)

l7e(t)−v̄1ė(t)−ω̄1ë(t)+l4ε(t)+l5ε̇(t)+l6ε̈(t)




(19)
with

l1 = (p̄1 − s̄2 − p1k13 + k11q1 − k23s1B13

B23
)

l2 = (q̄1 − v̄2 + k12q1 + a1k13)
l3 = (r̄1 − ω̄2 + k13)

l4 = (p̄1 − p1k13 + k11q1 + s̄1 +
k13s2B23

B13
)

l5 = (q̄1 + k12q1 + a1k13 + v̄1)
l6 = (r̄1 + k13 + ω̄1)

l7 = −(s̄1 +
k13s2B23

B13
)

Note that this change of coordinates allows to compute
the system stability tuning just the parameters k1l via pole
placement. The stability of (19) and synchronization of the
rotor angles depend on the stability of equations (17) and
(18), which is given by inequalities (11) (Cahlon y Schmidt,
2006). ¥
B. Simulation.

In this section we will illustrate the viability of the
proposed procedure. In Table I the parameters used to
describe the behavior of the machines are given. They are
taken from (Xi, 2002), and used to compute the equilibrium
point.
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The considered operating point is (δ1 = 0.5236, δ2 =
0.5236, ω1 = 377, ω2 = 377, E

′
q1

= 1.03, E
′
q2

= 1.01,
ū1 = −0.1477, ū2 = −0.1765).

The linearized nonlinear system around this equilibrium
point is

ẋ1,1 = x1,2

ẋ1,2 =−61.9395x1,1− 5
8
x1,2−25.6620x1,3+16.1584x2,1

ẋ1,3 =−0.1268x1,1 − 0.1449x1,3 + 0.0767x2,3 + u1

ẋ2,1 = x2,2

ẋ2,2 =12.6732x1,1−44.1746x2,1−0.2941x2,2−18.0073x2,3

ẋ2,3 =0.0845x1,3 − 0.1249x2,1 − 0.1256x2,3 + u2

where X =
[
δ1 ω1 E

′
q1

δ2 ω2 E
′
q2

]T
. Applying transfor-

mation (4) the canonical system is

ż1=z2

ż2=z3 (20)
ż3=−7.1097z1 − 62.0301z2 − 0.7699z3

+5.0322z4 + 11.3611z5 + 0.0767z6 + u1

ż4=z5

ż5=z6

ż6=7.5035z1 + 18.1132z2 + 0.0845z3

−4.2583z4 − 44.2116z5 − 0.4198z6 + u2.

Let the inputs u1 and u2 be of the form (14). The error
equation (8) becomes:

e(3)(t)=(−14.6132− 25.6410k11 + 61.8897k13

+18.0462k23)e(t)
−(80.1433+25.6410k12−0.6256k13)ė(t)
+(−0.8544 + k13)ë(t) (21)

and from (15) the coefficients of k2l are

k21=
5.3227+25.641k11−50.5437k13+26.1556k23

18.018

k22=
24.5706+25.641k12−0.6256k13+0.2937k23

18.018
k23=−0.3579 + k13.

The stabilization of (21) gives to y1 = y2 and (16) becomes

ε(3)(t)=(−2.0775−25.641k11+50.5437k13)ε(t)
+(−50.669−25.641k12+0.6256k13)ε̇(t)
+(−0.6932+k13)ε̈(t) (22)

After applying the change of coordinates based on the error

equations the transformed system is

d

dt




e(t)
ė(t)
ë(t)
ε(t)
ε̇(t)
ε̈(t)




=




ė(t)
ë(t)

p1e(t) + p2ė(t) + (−0.8544 + k13)ë(t)
ε̇(t)
ε̈(t)

p3e(t)+11.3611ė(t)+0.0767ë(t)+p4ε(t)
+p5ε̇(t)+(k13−0.6932)ε̈(t)




where

p1 = 79.9359k13 − 25.641k11 − 21.0719
p2 = −80.1433 + 0.6256k13 − 25.641k12

p3 = 5.0322− 11.346k13

p4 = 50.5437k13 − 25.641k11 − 2.0775
p5 = 0.6256k13 − 25.641k12 − 50.669

The stability of this transformed system can be guaranteed
from (11), which yield the following inequalities:

79.9359k13−25.641k11<21.0719
−25.6410k12+0.6256k13<80.1433

50.5437k13−25.641k11<2.0775
0.6256k13−25.641k12< 50.669

k13<0.6932
0.6256k2

13−25.641k12k13−0.7419k13 (23)
+21.9077k12−25.641k11>−47.4025

0.6256k2
13−25.641k12k13−0.559k13

+17.7743k12−25.641k11>−33.0463.

The following control laws are proposed.

u1 = −6x1 − 1x2 − 4x3 (24)
u2 = −3.3484x4 + 0.0084x5 − 4.3579x6

These values assures the stability of the system (19) and the
solution of the inequalities (23). The simulation results are
shown in Figure 1. The initial conditions are (δ11 = 0.8,
δ2 = 0.6, ω11 = 375, ω2 = 378, E

′
q1

= 1.2, E
′
q2

= 1.1).

Figures 2 and 3 shown the effect of the transmission line
delays, considering model (2) in closed loop with (24). Note
that the performance decrease with higher magnitudes of
time delays and the stability is lost for delays greater than
60 ms. However, this value is so big compared with the
usual magnitudes of transmission line delays.

V. CONCLUSIONS

A simple procedure to design a decentralized state feedback
controller has been proposed to tackle the stability control
problem for two wide area interconnected power systems.
It was shown that thanks to the full controllability of the
linearized models there exist a transformation which allows
to tune the controller’s parameters easily. The asymptotic
stabilization of the linearized models yields to the local
stabilization of the nonlinear plants. This could be exploited
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Figure 1. Error equations and control inputs.

to eliminate the need of WAMS in the control loop.
Furthermore, we claim that this methodology is valid to de-
sign decentralized controllers for bigger networks, although
the computation complexity is increased.
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Figure 2. Synchronization error. The considered time delays are
τ12 = 0, 50 ms and 60 ms respectively.

Figure 3. Tracking error. The considered time delays are
τ12 = 0, 50 ms and 60 ms respectively.


