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Resumen— This work presents a data-driven fault detection
scheme designed in the framework of the so called parity
space approach. The idea makes use of subspace identification
methods to identify directly the residual generator instead of
the process model. Particularly, it considers the identification
of the residual generator from noisy input-output data
using an errors-in-variables subspace identification method.
The proposed scheme is illustrated by simulations in an
interconnected tanks system.
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I. INTRODUCTION

The use of multivariate statistical methods such as
principal component analysis (PCA) for fault detection and
diagnosis has received significant attention in the last years.
Originally proposed as a quality monitoring technique in
(Jackson, 1991) and process monitoring method in (Kresta
et al., 1991), these methods are applied to a variety of
process monitoring problems and sensor validation based
on normal process data.

Given that the multivariate statistical monitoring
methods make use of the correlation among the process
variables, the statistical models are inherently steady state
characterizations of the process which can cause false
alarms in a dynamically operated process. To deal with
dynamic processes, dynamic PCA (DPCA) is discussed by
(Ku et al., 1995) where time lagged variables are included
in PCA. This extension, however, gives poor dynamic
models as demonstrated in (Negiz and Çinar, 1997) and
(Li and Qin, 2001).

To build a sound dynamic model from process data,
subspace identification methods (SIM) are promising
alternatives to PCA (Van Overschee and De Moor, 1996).
Among these SIM algorithms are the canonical
variate analysis, CVA (Larimore, 1990), N4SID (Van
Overschee and De Moor, 1994), MOESP (Verhaegen and
Dewilde, 1992), and the use of PCA, SIMPCA (Wang and
Qin, 2002), (Wang and Qin, 2006). SIM offers consistent
estimate of state-space models, e.g., the state space matrices

A, B, C, D for multivariable dynamic systems with proper
selection of the system order. A typical SIM contains two
steps: (1) identification of the extended observability matrix
and/or the state sequence; and (2) calculation of A, B, C, D.

While most SIM approaches appear as numerical
algorithms, statistical properties such as consistency
have been explored (Deistler et al., 1995), (Jansson
and Wahlberg, 1998), (Heij and Scherrer, 1999); as
well as the error-in-variables (EIV) problem (Chou and
Verhaegen, 1997), (Li and Qin, 2001).

The SIM formulation is attractive not only because of its
numerical simplicity and stability, but also for its general
state space form. More importantly, the SIM state space
formulation allows the implementation of fault detection
schemes ranging from totally model-based to totally
data-based, which provides great flexibility for comparing
and analyzing various methods.

The objective of this paper is to develop a data driven
method for fault detection that uses a subspace identification
algorithm under the EIV formulation. We propose to use
PCA with instrumental variables to eliminate input and
output errors.

Here, a direct estimation of the residual generator for
fault detection purposes is obtained based on capturing the
most of the normal process variations. This ’model’ should
be interpreted differently from the standard subspace
identification methods which seek to estimate an unbiased
model and requires external perturbation to excite all
process dynamics.

The paper is organized as follows. Section II describes
the parity space approach for fault detection. Section III
presents the identification of the residual generator using
SIM. Section IV shows simulation results on the intercon-
nected tanks system. Finally, Section V gives conclusions
to the paper.



                 Congreso Anual 2009 de la Asociación de México de Control Automático. Zacatecas, México.

II. PARITY SPACE APPROACH FOR FAULT DETECTION

II-A. Preliminaries

Although our method is data-driven, we start the process
description with a state space model in EIV forms. Assume
the model of the process is represented by the following
LTI state-space model

x(k + 1) = Ax(k) + Bu0(k) + ω(k)
y0(k) = Cx(k) + Du0(k) (1)

where u0(k) ∈ <l, y0(k) ∈ <s, x(k) ∈ <n, ω(k) ∈ <n

are noise-free inputs, noise-free outputs, state variables and
process noise, respectively. Matrices A, B, C and D are
system matrices with appropriate dimensions.

The available observations are input and output measure-
ments u(k) and y(k):

u(k) = u(k)0 + η(k)
y(k) = y(k)0 + ν(k) (2)

where η(k) ∈ <l, ν(k) ∈ <s are input and output noise.

We introduce the following assumptions:
1. All, the process noise ω(k), the measurement noise

η(k) and ν(k) are white noise, and they are statisti-
cally independent of the past noise-free input u0(k),
i.e.,

E


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

u0(k)




ω(j)
η(j)
ν(j)




T




= 0 for j ≥ k (3)

2. The three white-noise sequences can be correlated and
their covariance is given by the following unknown
matrix

E
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

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
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(4)

where δkj is the Kronecker delta function.

By manipulating (1) and (2) we obtain

yf (k) = Γfxf (k)+Hd
fuf (k)−Hd

fηf (k)+Hs
fωf (k)+νf (k)

(5)
where for an arbitrary time point k taken as the current

time, the following vectors and matrices are defined.

yf (k) =




y(k)
y(k + 1)
...
y(k + f − 1)


 ∈ <

sf (6)

is the future output extended vector. The vectors uf (k) ∈
<lf , ηf (k) ∈ <lf , ωf (k) ∈ <nf and νf (k) ∈ <sf are
defined similar to yf (k). Additionally,

Γf =




C
CA
...
CAf−1


 ∈ <

sf×n (7)

is the extended observability matrix with rank(Γf ) = n,
and

Hd
f =




D 0 · · · 0
CB D · · · 0
...

...
. . .

...
CAf−2B CAf−3B · · · D


 ∈ <

sf×lf

(8)

Hs
f =




0 0 · · · 0
C 0 · · · 0
...

...
. . .

...
CAf−2 CAf−3 · · · 0


 ∈ <

sf×nf , (9)

are two block Toeplitz matrices.

II-B. Parity Space based Residual Generator

Introducing

zf (k) =
[

yf (k)
uf (k)

]
∈ <sf+lf , (10)

we can rewrite (5) into
[
I −Hd

f

]
zf (k) = Γfxf (k)−Hd

fηf (k)+Hs
fωf (k)+νf (k)

(11)
To use (11) for fault detection, it is necessary to eliminate

the state vector xf (k). In the conventional approach of par-
ity space (Chow and Willsky, 1984), the state is eliminated
by pre-multiplying (11) by Γ⊥f ∈ <sf×(sf−n) which is the
orthogonal complement of Γf and satisfies

rank
(
Γ⊥f

)
= sf − n

Γ⊥f
T
Γf = 0

(12)

The residual vector is then defined as

Gzf (k) = r(k) ∈ <(sf−n) (13)

where
G ≡ Γ⊥f

T [
I −Hd

f

]
, (14)

G ∈ <(sf−n)×(sf+lf), is the named residual generator and

r(k) ≡ Γ⊥f
T (−Hd

fηf (k) + Hs
fωf (k) + νf (k)

)
(15)

is the residual which under nominal conditions depends only
in the noise terms.
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II-C. Monitoring Index for Fault Detection

If a sensor is faulty, its measurement will contain the nor-
mal values of the process variables and the fault component,
this is represented as follows

zf (k) = z∗f (k) + Ξifi(k) (16)

where z∗f (k) is the fault free portion of the variables,
Ξi ∈ <(sf+lf)×li is an orthogonal matrix representing the
fault direction, and fi(k) ∈ <li is the fault magnitude vector.

Therefore, substituting (16) in (13), under fault conditions
the residual results in

r(k) = G
(
z∗f (k) + Ξifi(k)

)
= r∗(k) + GΞifi(k) (17)

where
r∗(k) = Gz∗f (k) = r(k)|fi=0 (18)

is the residual under normal conditions.

Since r∗(k) contains the measurement terms which are
Gaussian, then r∗(k) is also Gaussian (Anderson, 1984)

r∗(k) ∼ ℵ(0,Rr∗) (19)

where ℵ(0,Rr∗) denotes a Gaussian distribution with
mean 0 and covariance Rr∗ .

According with (Qin and Li, 2001) it can be defined a
fault detection index for the residuals obtained in the parity
space. So, given that r∗(k) is Gaussian, consequently

r∗T (k)R−1
r∗ r∗(k) ∼ χ2(sf − n) (20)

where χ2(sf − n) denotes the Chi square distribution with
(sf − n) degrees of freedom; by the other side, Rr∗ is the
covariance matrix of r∗(k) which according with (18), it is
defined as

Rr∗ = cov (r∗(k)) = cov
(
Gz∗f (k)

)
= GRz∗GT (21)

where
Rz∗ ≡ E

[
z∗f (k)z∗f

T (k)
]
, (22)

is the covariance matrix of z∗f (k) and can be estimated
from process normal data.

In conclusion, the fault detection index for the residual
space is defined as follows

d(k) = rT (k)R−1
r∗ r(k)

= zT
f (k)GT

(
GRz∗GT

)−1
Gzf (k)

(23)

whose nominal threshold UCL (upper control limit) is
UCL = χ2

α(sf − n), where α is the confidence level.
The reasoning for the fault detection is: if for a new
sample zf (k), d(k) ≤ UCL, then the process is in normal
conditions, otherwise, a fault has been detected.

III. IDENTIFICATION OF THE RESIDUAL GENERATOR

If the process matrices {A,B,C,D} are known then
the residual generator given in (14) can be constructed;
however, if there is no knowledge of the system model we
could resort to subspace identification methods.

In general, the SIM’s make use of geometric tools
like orthogonal or oblique projection, singular value
decomposition, to determine the order, the observability
matrix and/or the state sequence; then the extraction of
matrices {A,B,C,D} is achieved through the solution of
a least squares problem. However, for the purpose of fault
detection we only need to identify directly the residual
generator G.

To identify G consistently from noisy input-output
observations we use EIV subspace identification methods,
specifically the SIMPCA-Wc proposed by (Wang and
Qin, 2002), (Wang and Qin, 2006) to estimate Hd

f and Γ⊥f .

From (13)-(15) and using the data matrices instead of the
data vectors {zf , ηf , ωf , νf} it results

Γ⊥f
T [

I −Hd
f

]
Zf = Γ⊥f

T (−Hd
fΥf + Hs

fΩf + Vf

)
(24)

where e.g.

Zf =
[

zf (k) · · · zf (k + N − 1)
] ∈ <(sf+lf)×N

(25)
Lets define the past measurements matrix Zp as

Zp =
[

yp(k)
up(k) · · · yp(k + N − 1)

up(k + N − 1)

]
∈ <(sp+lp)×N

(26)
where

yp(k) =




y(k − p)
y(k − p + 1)
...
y(k − 1)


 ∈ <

sp (27)

is the past output extended vector. The vector up(k) ∈ <lp

is defined similar to yp(k).

To eliminate the effect of noise asymptotically in (24) it
is proposed the use of Zp as instrumental variables given
that the future noises {Υf ,Ωf ,Vf} are independent of
past data, (Chou and Verhaegen, 1997). So, post-multiplying
(24) by 1

N ZT
p Wc where

Wc =
(

1
N

ZpZT
p

)− 1
2

, (28)

it results

Γ⊥f
T [

I −Hd
f

] 1
N

ZfZT
p Wc = 0 (29)

The purpose of the weighting matrix Wc is in order to
achieve the normalization of the instrumental variables.
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Performing PCA on 1
N ZfZT

p Wc we obtain

1
N

ZfZT
p Wc = PTT + P̃T̃T (30)

and given that Γ⊥f
T

[
I −Hd

f

]
is in the left null space of

1
N ZfZT

p Wc with

rank

(
1
N

ZfZT
p Wc

)
= lf + n

then [
Γ⊥f

−Hd
f

T
Γ⊥f

]
= P̃M =

[
P̃y

P̃u

]
M (31)

where P̃ ∈ <(sf+lf)×(sf−n) and M ∈ <(sf−n)×(sf−n) is
a nonsingular matrix.

By manipulating (31) the following relation is obtained
which is independent of M

−P̃T
y Hd

f = P̃T
u (32)

So, to estimate Hd
f from (32) this is rearranged as

−P̃T
y = Φ =

[
Φ1 Φ2 · · ·Φf

]
; Φi ∈ <(sf−n)×s

P̃T
u = Ψ =

[
Ψ1 Ψ2 · · ·Ψf

]
; Ψi ∈ <(sf−n)×l

(33)
thus, (32) becomes

[
Φ1 Φ2 · · ·Φf

]
Hd

f =
[

Ψ1 Ψ2 · · ·Ψf

]
(34)

Lets take the first block column of Hd
f , see (8),

Hd
f1

=




D
CB
...
CAf−2B


 (35)

which can be estimated by least squares by rearranging (34)
as an overdetermined system as follows



Φ1 Φ2 · · · Φf

Φ2 Φ3 · · · 0
...

...
. . .

...
Φf 0 · · · 0


Hd

f1
=




Ψ1

Ψ2

...
Ψf


 (36)

Once Ĥd
f1

is estimated, Ĥd
f can be easily constructed.

By the other side, once Ĥd
f is known it can be defined

Γ⊥f
T

[
I − Ĥd

f

] 1
N

ZfZT
p = 0 (37)

and applying a SVD on
[
I − Ĥd

f

]
1
N ZfZT

p then Γ̂⊥f can
be obtained as the left null space.

Finally, the residual generator Ĝ will be given as

Ĝ =
(
Γ̂⊥f

)T [
I − Ĥd

f

]
(38)

In the next section, the effectiveness of the proposed fault
detection scheme is demonstrated by simulations on a three
tanks hydraulic system.

u1 u2AT

y1 y3 y2
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ff3 ff2
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Figura 1. Interconnected Tanks System
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Figura 2. Nominal Input-Output Variables

IV. INTERCONNECTED TANKS SYSTEM - CASE STUDY

The interconnected tanks hydraulic system, described
in Fig. 1, is composed of three cylindrical tanks,
interconnected at the bottom by pipes with valves V1 in
the link between tanks 1 and 3, V3 in the link between
tanks 3 and 2, and V2 in the link between tank 2 and the
outside, which can be manipulated to emulate faults (e.g.
pipe blockage). The system is feed by two inputs u1 to the
tank 1 and u2 to the tank 2 which are measured as well
as the output variables y1, y2 and y3 which correspond to
tanks levels. Additionally, each of the tanks is provided
with a valve in the bottom which can be manipulated to
emulate leakages, ffi’s.

For the experiments, the system is simulated around the
following operating point

Mean Values Variance
u1 = 3× 10−5m3/s
u2 = 2× 10−5m3/s

y1 = 0.310m
y2 = 0.130m
y3 = 0.220m

σ2
u1

= 6.5× 10−11

σ2
u2

= 6.5× 10−11

σ2
y1

= 2.4× 10−3

σ2
y2

= 8× 10−4

σ2
y3

= 1.1× 10−3

the value of the variances determines the normal variation
in the input-output measurements. The nominal parameters
considered are α13 = 1.002 × 10−4, α32 = 1.027 × 10−4

and α20 = 1.360×10−4; where αij is the flow constant for
the corresponding pipe between tanks i and j. Additionally
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Figura 3. Bias in output sensor y3

to the normal variations, the input and output variables are
subject to zero mean Gaussian white noise.

Using the EIV subspace identification algorithm
described in Section III, the residual generator G is
identified from a set of 400 nominal observations of the
variables measured every 60s, see Fig. 2. The future and
past horizon are chosen as: f = 7 and p = 20. The
variables are scaled to zero mean and unit variance to
apply equal weighting to all variables. The control limit
for a confidence level α = 0.01 is UCL = 49.18.

The following operating conditions were evaluated:

1. Fault condition, bias of magnitude 0.1m in output
sensor y3. The fault occurrence time is at 40× 103s.

2. Fault condition, bias of magnitude 0.015l/s in actu-
ator u2. The fault occurrence time is at 40× 103s.

3. Fault condition, blockage of magnitude 20% in the
pipe which links tanks 1 and 3. The fault occurrence
time is at 40× 103s.

4. Fault condition, leakage of magnitude 70% in thank
1. The fault occurrence time is at 40× 103s.

The simulation results in figures 3-6, shows the effec-
tiveness of the proposed scheme to detect not only sensor
faults, but also process faults. It is important to note that
for the simulations the fault magnitudes have been chosen
with such values taken into account the high variability
considered in the variables, see Fig. 2.

V. CONCLUSIONS

A data-driven fault detection scheme designed in the
framework of the so called parity space approach has
been presented. Here it is presented a method to directly
identify the residual generator from noisy input-output
data using an errors-in-variables subspace identification
method, specifically, PCA with instrumental variables.
The proposed scheme is illustrated by simulations in an
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Figura 4. Bias in actuator u2

0 200 400 600 800 1000 1200
0

50

100

150

200

250

300

350

400

Samples

 

 
d−index
UCL

Figura 5. Blockage in the pipe which links tanks 1 and 3
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Figura 6. Leakage in tank 1
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interconnected tanks system.

The use of multivariate statistical methods like PCA in
the classical approach described by the process monitoring
community has been successful for the fault detection task
but is limited for the fault isolation task. In the case of
fault diagnosis schemes based in the SIM formulation the
fault isolation task can be easily achieved resorting to the
conventional approaches of FDI based in models given
that the SIM is able to get a model of the system under
monitoring.
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