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Abstract— This paper addresses and solves the trajectory
tracking problem for the planar dynamics of a thrust vectored
airship. The proposed controller is based on a combination
of two nonlinear control design techniques, backstepping and
Exact Tracking Error Dynamics Passive Output Fedback
(ETDPOF). Numerical simulations show the performance
of the proposed controller and some concluding remarks
complete the paper.
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I. INTRODUCTION

Among the topologies of unmanned aerial vehicles capa-

ble of hovering airships represent an interesting option for

low speed, low altitude, long term monitoring and surveil-

lance missions. Airships have the benefits, with respect to

rotary wing aerial vehicles, from the absecence of rotors,

which generally imply high structural design costs and the

low power requirements to hover thanks to aerostatic lift.

In fact, the attribute of low power consumption to hover

makes airships noisless, ecological and very useful for long

term enviromental applications (Maggiore, 2005) such as

oceanographic, agricultural and climate studies.

The undoubtly regain of interest in potential applica-

tions of airships has attracted the attention of several re-

search institutes and private companies. Innovative research

projects devoted to airship operation have already provided

interesting results in some places. The Aurora project from

Campinas Information Technology has proposed some ef-

ficient blimp navigation algorithms (Carvalho, 2001), the

Lotte project from the University of Stuttgart and the Aztec

project from the University of Virginia have introduced

new power plants based on solar energy (Kungl, 2001),

the Elettra Twin Flyiers airship designed and patented by

Nautilus S.p.A. and the Polytechnic of Turin has introduced

new concepts on airship topology.

The ability of an airship to autonomously achieve a mis-

sion requires a successful flight control system in conjuction

with an efficient algorithm to fusion different sensor’s mea-

surements to determine the airship spatial position and atti-

tude. In developing the flight control system difficulties arise

because the airship dynamic model is described by a set of

nonlinear differential equations with the particularity that

the traslational dynamics is coupled to the rotational dynam-

ics through acceleration terms. This makes the airship flight

control design a difficult task attracting the interest of many

control researchers who had proposed control algorithms

based on linear and nonlinear control design techniques. In

particular, classical linear design tools have been used in

(Carvalho, 2001), (Yamada, 2007), whereas the application

of advanced nonlinear methods, such as dynamical de-

coupling (Solaque, 2008), backstepping (Repoulias, 2008),

dynamic inversion (Moutinho, 2005) and neural networks

(Park, 2003) has also been investigated.

In this paper the trajectory tracking problem for the

lateral dynamics of an airship driven by a single rotor is

addressed and solved. It is shown that a combination of

two nonlinear control design techniques yields a locally

asymtotically stable closed–loop system. The rest of the

paper is organized as follows. In Section II we present

the airship planar dynamics. Section III is committed to

the design of the nonlinear controller. Finally, in Section

IV we illustrate the performance of the proposed nonlinear

controller with numerical simulations and in Section V we

present some concluding remarks.

II. PLANAR AIRSHIP DYNAMIC MODEL

In order to describe the airship dynamic model we

consider two coordinate systems. The right-hand inertial

coordinate system (Earth axis) denoted as xeyeze and

the non inertial coordinate system (body axes) denoted as

xbybzb, whose origin is at the airship volumetric center. See

Figure 1. The airship dynamics expressed in terms of the

body axis coordinates is described by (Thor, 1994)

m
[

V̇CV + Ω × VCV + Ω̇ × rcg + Ω × (Ω × rcg)
]

= F be

IΩ̇ + Ω × IΩ +m
[

rcg ×
(

V̇CV + Ω × VCV

)]

= M b
e

(1)

where VCV =
[

u v W
]⊤

is the volumetric center

velocity, Ω =
[

p q r
]⊤

is the volumetric center

angular velocity, rcg =
[

xcg ycg zcg
]⊤

is the center

of gravity position with respect to the volumetric center and

F be = F bAM + F bR + F bP + F bA
M b
e = M b

AI +M b
R +M b

P +M b
A

the external applied forces and moments. Considering that

the kinetic energy induced in the air by the airship motion
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Figure 1. Earth axes and body axes.

Figure 2. Propulsion system.

is given as(Thor, 1994)

TA =
1

2

(

Xu̇u
2 + Yv̇v

2 + Zẇw
2 +Kṗp

2 +Mq̇q
2 +Nṙr

2
)

then, the added mass and inertia forces are

F bAM = MAV̇
b
CV + C12Ω

M b
IM = IAΩ̇ + C12V

b
CV + C22Ω

where

MA = diag{Xu̇, Yv̇, Zẇ}, IA = diag{Kṗ,Mq̇, Nṙ}

C12 =





0 Zẇw −Yv̇v
−Zẇw 0 Xu̇u
Yv̇v −Xu̇u 0





C22 =





0 Nṙr −Mq̇q
−Nṙr 0 Kṗp
Mq̇q −Kṗp 0





The restoring forces are given by

F bR = (W −B)r3, M
b
R = (W −B)rcg × r3

with r3 the third column of the rotation matrix that describes

the orientation of the body frame relative to the inertial

frame, that is,

R =





cθcψ cθsψ −sθ
cψsθsφ − sψcφ sψsθsφ + cψcφ cθsφ
cψsθcφ + sψsφ sψsθcφ − cψsφ cθcφ





The airship is driven by a vectored thrust whose configura-

tion is described in Figure 2

We apply the Denavit Hartenberg procedure, whose pa-

rameters are

α a d θ

π ℓ1 −ℓ3 −δ1
0 0 −ℓ4 0
π
2

0 0 δ2
0 ℓ2 0 0

Table 1. Denavit Hartenberg parameters

then, we have that the transformation matrix from the

coordinate system x4y4z4 to xbybzb is given by

T b4 =









cδ1cδ2 −cδ1sδ2 −sδ1 ℓ1 + ℓ2cδ1cδ2
cδ2sδ1 −sδ1sδ2 cδ1 ℓ2cδ2sδ1
−sδ2 −cδ2 0 ℓ3 + ℓ4 − ℓ2sδ2

0 0 0 1









In terms of the x4y4z4 coordinates the propeller thrust is

TP =
[

T 0 0
]⊤

moreover, the propeller position with respect to the body

axis is given by

rP =
[

ℓ1 + ℓ2cδ1cδ2 −ℓ2cδ2sδ1 ℓ3 + ℓ4 − ℓ2sδ2
]⊤

finally,

F bP =





Tcδ1cδ2
Tcδ2sδ1
−Tsδ2



 , M b
P =





−(ℓ3 + ℓ4)Tcδ2sδ1
(ℓ3 + ℓ4)Tcδ1cδ2 + ℓ1Tsδ2

ℓ1Tcδ2sδ1





The airship lateral dynamics is described by the following

equations

ẊL =

[

Rψ 0
0 1

]

VL

MLV̇L =
[

JL(VL) −DL

]

VL + BLuL + FL

(2)

where XL =
[

x y ψ
]⊤

, VL =
[

u v r
]⊤

,

uL =
[

Tcδ1cδ2 Tcδ1sδ2
]

and
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ML =





mx 0 0
0 my mxcg
0 mxcg Iz



 , DL =





Xu 0 0
0 Yu 0
0 0 Zu





JL(VL) =





0 mr −Yv̇v +mxcgr
−mr 0 Xu̇u

Yv̇v −mxcgr −Xu̇u 0





BL =

[

1 0 0
0 1 ℓ1

]⊤

, Rψ =

[

cψ −sψ
sψ cψ

]

with mx = m−Xu̇, my = m−Yv̇, Iz = Izz−Nṙ and FL
the external forces and moments.

III. NONLINEAR CONTROLLER

Consider the following general model of physical sys-

tems,

Aẋ = J (x, u) −R(x, u)x+ B(x)u + E(t)

y = B⊤x
(3)

where x is an n dimensional vector, A is a constant sym-

metric, positive define matrix, J (x, u) is a skew symmetric

matrix, R(x, u) is a symmetric positive definite matrix and

E(t) is an n-dimensional smooth vector function of t or

sometimes, a constant vector, y is an m dimensional vector.

Moreover we assume that,

J (x, u) = J0 +
∑m
j=1

J u
j uj +

∑n
k=1

J x
k xk

R(x, u) = R0 +
∑m

j=1
Ru
j uj +

∑n
k=1

Rx
kxk

B(x) = B0 +
∑n

k=1
Bkuk

(4)

Consider now that

A1 Given a feasible smooth bounded reference trajectory

x∗(t) ∈ R
n

there exist a smooth open loop control

input u∗(t) ∈ R
m

, such that for all trajectories starting

at x(t0) = x∗(t0), the tracking error e(t) = x(t) −
x∗(t) is identically zero for all t ≥ t0.

A2 For any constant positive definite symmetric matrix K
the following relation is uniformly satisfied,

R∗(x, u, t) + B∗(x, t)KB∗(x, t)⊤ > 0

Theorem 1: Consider the system (3)-(4) in closed loop

with the controller,

u = u∗(t) −KB∗(x, t)e. (5)

Then, under assumption A1 and A2, the tracking error e(t)
is globally asymptotically stabilized to zero.

Proof: Let us define eu = u−u∗(t) and the following,

M∗(t) = [(J x
1
−Rx

1
)x∗ · · · (J x

n −Rx
n)x

∗]

L∗(t) = [B1x
∗ · · ·Bnx

∗]

Q∗(t) = [(J u
1
−Ru

1
)x∗ · · · (J u

m −Ru
m)x∗]

(6)

where x∗ = x∗(t). Straightforward computations show that

the error dynamics reads as,

Aė = J ∗(x, u, t) −R∗(x, u, t)e+ B∗(x, t)eu

ye = B∗(x, t)⊤e
(7)

where

J ∗(x, u, t) = J (x, u) + 1

2

[

P∗(t) − P∗(t)⊤
]

R∗(x, u, t) = R(x, u) − 1

2

[

P∗(t) + P∗(t)⊤
]

B∗(x, t) = B(x) + Q∗(t)

(8)

with

P(t) = M∗(t) + L∗(t).

We refer to (7) as the exact open loop error dynamics. Take

now the following Lyapunov function candidate,

V = 1

2
e⊤Ae (9)

whose time derivative is given by.

V̇ = −e⊤R∗(x, u, t)e+ e⊤B∗(x, t)eu

Introducing (5) into the above equation, we have,

V̇ = −e⊤
[

R∗(x, u, t) + B∗(x, t)KB∗(x, t)⊤
]

e,

By A2 the proof is completed.

Now, we are in position to present the main contribution

of this paper, that is to say a nonlinear controller yielding

local asymptotic stability of the trajectory tracking error for

the thrust vectored airship.

Proposition 1: Assume FL = 0 and let xd and yd be the

desired airship trajectories with bounded time derivatives.

Consider the lateral airship dynamics (2) in closed–loop

with the dynamic state feedback control

uL = uLd −KB⊤

LeVL
(10)

where K = diag{k1, k2},

eVL
= VL − VLd =





eu
ev
er



 =





u− ud
v − vd
r − rd





[

ud
vd

]

= −KX tanh(n) +R⊤

ψ Ẋd

KX = diag{kx, ky}and

n = R⊤

ψ

[

ex
ey

]

, Xd =

[

xd
yd

]

Moreover, ex = x−xd, ey = y− yd, rd the solution of the

differential equation

B⊥

{

MLV̇Ld −
[

JL(VLd) −DL

]

VLd

}

= 0 (11)

and

uLd =
[

B⊤B
]−1

B⊤

{

MLV̇Ld +
[

JL(VLd) −DL

]

VLd

}
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Assume that in the subspace S ⊂ R
7

there exist a bounded

solution for (11). Then, there exist k1, k2, kx and ky positive

constants such that

lim
t→∞

ex = 0, lim
t→∞

ey = 0 (12)

holds in S.

Proof: The selection of ud and vd is based on the

fact that if the system follows these velocity references

automatically it follows the desired path over the (x − y)
plane. From the first equation of (2) we can see that,

Ẋ = RψV (13)

where X =
[

x y
]⊤

and V =
[

u v
]⊤

. In terms of

n equation (13) reads as

ṅ = V −R⊤

ψ Ẋd + J(r)n (14)

with

J(r) =

[

0 r
−r 0

]

In (14) we consider V as a virtual control and we design

it in such a way that the system tracks a desired path. A

possible virtual control choice is given by

V = −KX tanh(n) +R⊤

ψ Ẋd (15)

Consider now the kinematic equation (14) in closed loop

with the virtual control (15),

ṅ = −KX tanh(n) + J(r)n (16)

With the choice of the Lyapunov function Vn = 1/2n⊤n
whose time derivative along (16) is

V̇n = −n⊤KX tanh(n)

we conclude that the velocity defined in (15) solves the

trajectory tracking problem, at the kinematic level, as a

result this velocity is selected as the desired velocity for

the airship dynamic model.

Note that the closed–loop dynamics (2)–(10) expressed

in terms of the n, ψ, rd and eVL
coordinates reads as,

ṅ = −KX tanh(n) + J(er + rd)n+ ēVL

ψ̇ = er + rd

MLėVL
= J ∗

LeVL
−

[

D∗

L + BLKB⊤

L

]

eVL

a0ṙd = a1(n, ψ, t)rd + a2(eVL
, n, t)

where ēVL
=

[

eu ev
]⊤

, and following the exact track-

ing error dynamics passive output feedback technique,

J ∗

L = JL(eVL
, t) +

1

2

[

P(n, ψ, rd, t) − P(n, ψ, rd, t)
⊤

]

D∗

L = DL −
1

2

[

P(n, ψ, rd, t) + P(n, ψ, rd, t)
⊤

]

with

P(n, ψ, rd, t) =
[

Ju
1
VLd Jv

2
VLd Jr

3
VLd

]

Ju
1

=





0 0 0
0 0 Xu̇

0 −Xu̇ 0



 , Jv
2

=





0 0 −Yv̇
0 0 0
Yv̇ 0 0





Jr
3

=





0 m mxcg
−m 0 0

−mxcg 0 0





moreover,

a0 = Iz −mxcgℓ1

a1 = (mxℓ1 −mxcg)ud −Nr

+ (myℓ1 −mxcg)

[

∂vd
∂ψ

−
∂vd
∂n2

n1

]

a2 = (myℓ1 −mxcg)

[

∂vd
∂n2

(ev − ky tanh(n2) − ern1)

+
∂vd
∂t

+
∂vd
∂ψ

er

]

+ [ℓ1Yv − (Xu̇ + Yv̇)ud] vd

g =
[

0 1
]⊤

.

By defining the Lyapunov function

VeVL
=

1

2
e⊤VL

MLeVL

and computing its time derivative we obtain

V̇eVL
= −e⊤VL

[

D∗

L + BLKB⊤

L

]

eVL

where

D∗

L + BLKB⊤

L = DTL =

[

A1 B1

B⊤
1

C1

]

with

A1 =

[

k1 +Xu
1

2
(Yv̇ −Xu̇) rd

1

2
(Yv̇ −Xu̇) rd k1 + Yv

]

B1 =

[

− 1

2
(mxvd − xcgrd)

1

2
myud + k2ℓ1

]

C1 = Nr + ℓ2
1
k2 +mxcgud

In order to make V̇eVL
negative its should be possible to

select k1 and k2 in such a way that DTL is positive definite.

Note that the first minor of DTL is trivially positive, the

second minor will be positive selecting k1 and k2 large

enough to satisfy

(k1 +Xu) (k2 + Yv) −
1

4
(Yv̇ −Xu̇) δ

2

r > 0

with rd ≤ δr. The third minor of DTL is given by

det (DTL) = det(A1)
[

C1 −B⊤

1 A
−1

1
B1

]

thus, det (DTL) will be positive if and only if C1 −
B⊤

1 A
−1

1
B1 > 0. Notice that for a desired trajectory with

bounded time derivatives we do have

|ud| ≤ kx + |ẋd| + |ẏd| = kx + κT
|vd| ≤ ky + |ẋd| + |ẏd| = ky + κT
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then, there exist k2 such that C1 > 0. Straightforward

algebraic manipulations show that

B⊤

1 A
−1

1
B1 =

b0r
2

d + b1rd + b2
−(Yv̇ −Xu̇)2r2d + 4(Xu + k1)(Yv + k2)

with

b0 = mxcg [xcg(Yv + k2) + (myud + 2ℓ1k2)(Yv̇ −Xu̇)]
b1 = mxvd [2mxcg(Yv + k2)

−(myud + 2ℓ1k2)(Xu̇ − Yv̇)]
b2 = (k1 +Xu)(m

2

yu
2

d + 4myudℓ1 + 4ℓ2
1
k2

2
)

+m2

xv
2

d(k2 + Yv)

Due to the fact that rd, ud and vd are bounded we have

|B⊤

1
A−1

1
B1| ≤

κ1k2 + κ2 + (k1 +Xu)4ℓ
2

1
k2

2

4(Xu + k1)(Yv + k2) − κ3

where κi, i = 1, 2, 3 positive constants. Note that the upper

bounds on ud and vd can be arbitrarily small, consequently

we have |B⊤
1
A−1

1
B1| ≤ κ5 + κ6k2 for large enough values

of k1 and k2, with κ5 and κ6 arbitrarily small positive

constants. Finally, the third minor of DTL will be positive

definite provided

Nr + ℓ2
1
k2 +mxcgud − κ5 − κ6k2 > 0

as ud, κ5 and κ6 are arbitrarily small for large values of

k1 and k2 and small values of kx, ky , |ẋd| and |ẏd| the

inequality is satisfied. As a consequence eVL
is bounded

and converges to zero.

Consider now the Lyapunov function Vn = 1

2
n⊤n whose

time derivative is given by

V̇n = −n⊤KX tanh(n) + n⊤ēVL

as ēVL
is a vanishing disturbance (12) is concluded.

In all previous developments the corner stone is the

assumption on the boundedness on rd. To show that S is

not an empty set, we observe that

a0ṙd = a1rd + κ4ev + κ5er + κ6n1 (17)

where κi, i = 4, 5, 6 positive constants and we have used

the fact that
∣

∣

∣

∣

∂vd
∂ψ

∣

∣

∣

∣

≤ |ẋd| + |ẏd|,

∣

∣

∣

∣

∂vd
∂t

∣

∣

∣

∣

≤ |ẍd| + |ÿd|,

∣

∣

∣

∣

∂vd
∂n2

∣

∣

∣

∣

≤ ky

Note that the solutions of equation (17) are bounded around

ev = 0, er = 0 and n1 = 0 provided a0 > 0, a1 < 0.

The proposed controller is not able to modify the sign of

a0 and the only way to satisfy a1 < 0 is to choose kx, |ẋd|
and |ẏd| sufficiently small as Nr is a positive constant.

Remark 1: Note that a drawback of the controller in

Proposition 1 depends on the airship parameters, mainly

Nr. In order to address this problem the controller can be

modified as

uLd
= −KX tanh(n) +R⊤

ψ Ẋd +Grrd

where Gr =
[

0 −kr
]⊤

with kr a positive constant. In

this case, the control objective (12) can be achieved with

Nr = 0. Unfortunately, the proof of closed–loop stability

gets even more involved.

IV. NUMERICAL SIMULATIONS

We performed a few numerical simulations to illustrate

the results of Proposition 1 and Remark . The airship param-

eter values are m = 2.36, Xu̇ = −0.2879, Yv̇ = −1.89508,

Nṙ = −0.0089, Izz = 2.13, xcg = 0.01, Xu = 1, Yv = 1,

Nr = 1 and ℓ1 = 0.3. The desired trajectory is defined

as xd = 10 sin
(

π
100

t
)

, yd = 10 cos
(

π
100

t
)

. Finally, the

controller parameters are kx = 0.25, ky = 0.25, kr =
−0.45, k1 = 1 and k2 = 1. In order to test the robustness of

the proposed controller with respect to unmodeled dynamics

we consider

FL =
1

2
ρ
√

u2 + v2

[

CDV
2/3
o CY V

2/3
o CNVo

]⊤

with CD = 0.6, CY = 0.2, CN = 0.2 the aerodynamic

coefficients, Vo = 3.39 the airship volume and ρ = 1.18
the air density.

Figure 8 and figure 9 show the values of our controls

through the time, but this information does not really help

us to understand the system behavior because the actual

physical controls are the force T and the angle δ2 mentioned

in 2 (the angle δ1 is not taken into account because we are

analyzing only the lateral dynamics).

Figure 6 and 7 shows the time history of the angle control

and the force control with and without aerodynamic forces.

Figure 5 shows the time history of the airship planar

position with and without aerodynamic forces. As can be

observed closed–loop stability is preserved in the presence

of unmodeled dynamics.
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C
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Figure 3. Control uL1. Aerodynamic forces equal zero (continuos line),
non zero aerodynamic forces (dashed line).

V. CONCLUSIONS

The problem of trajectory tracking for the planar dy-

namics of a thrust vectored airship has been addressed

and solved by means of a nonlinear controller. Numerical

simulations have been proposed to illustrate the closed–loop

dynamics properties.
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Figure 4. Control uL2. Aerodynamic forces equal zero (continuos line),
non zero aerodynamic forces (dashed line).
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Figure 5. Control angle δ2. Aerodynamic forces equal zero (continuos
line), non zero aerodynamic forces (dashed line).
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Figure 6. Control force T . Aerodynamic forces equal zero (continuos
line), non zero aerodynamic forces (dashed line).
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Figure 7. Airship trajectory. Aerodynamic forces equal zero (continuos
line), non zero aerodynamic forces (dashed line).
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