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Abstract— It is well known that when a feedback control ~when applying dynamic output feedback.
law is chosen to solve a particular problem, usually there €st As a consequence of the research concerning disturbance
some fixed poles in the closed-loop system, i.e. Closed'looF’decoupling, fixed poles, and pole placement, it is clear

fixed poles that do not depend on the choice of the control . . .
law but precisely on the fact that this particular problem is  that disturbance decoupling can be achieved through pole

being solved. In this paper we present new results concernin ~ placement, under certain structural constraints.
the disturbance decoupling by static output feedback. In this paper we present a new results concerning the

disturbance decoupling problem in terms of pole placement
using a static output feedback in the monovariable case.
We discuss too, the static state feedback for monovariable
systems, which is a methodology previously developed in
(Del Muro C.B. and Martinez G.J.C., 2000), being the base

Since the geometric theory of linear multivariable systo design a static output feedback achieving disturbance
tems appeared (60-70s), a large number of control proltecoupling.
lems has been solved using this tool, such as disturbanceThe main interest of this new approach is their simplicity:
rejection, input-output decoupling, regulation and feélu even if the results are based in geometric tools, we don't
detection problems (see for instance (Wonham W.M., 1993)ed to compute any geometric subspace to use the results
and (Basile G. and Marro G., 1992)) This paper dealgere presented.
with the disturbance decoupling problem and their solution The paper is organized as follows. In Section 2 we revisit
using the fixed poles characterization. This approach e main results concerning the disturbance decoupling by
very simple to understand and to implement using contr@katic output feedback. In particular, we recall the charac
software like Matlab. terization of the fixed poles for this problem.

Exact disturbance decoupling, as a control objective, is a |n Section 3 we present necessary and sufficient solv-
common task in control engineering. In fact, disturbance dexbility conditions for the existence of a solution for the
coupling is one of the most familiar problems in control thedisturbance decoupling problem by state feedback and stati
ory for which many contributions have already been brougljutput feedback. We present a methodology to decouple
(e.g. (Eldem V. and Ozguler A.B., 1988), (Schumachegiisturbance (when possible) via static state feedback and
J.M., 1980) and (Willems J.C. and Commault C., 19813tatic output feedback which is the main result, under some
)- On the other hand, pole placement is a common contrebntrollability or observability assumptions. This metlob
strategy (see for instance (T. Kailath, 1980)) for achigvinogy is based in the priory computation of the ”possible”
specific closed-loop performances. It is then natural to agiisturbance Decoupling fixed poles. In Section 4 we present
about the connection between exact disturbance decouplifgstrative examples and we conclude in Section 5 with
and pole placement. In addition, it is well known thatsome final comments.
when a feedback control law is chosen in order to solve
a particular problem, usually exist some fixed poles in the Il. THE DISTURBANCE DECOUPLING PROBLEM
closed-loop system, i.e. closed-loop fixed poles that do not
depend on the choice of the control law but precisely on,
the fact that this particular problem is being solved. As
far as the disturbance decoupling is concerned, the fixed z(t
poles have been characterized in geometric and algebraic y (t

z(
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|. INTRODUCTION

Consider the linear time-invariant system, (B, C, D,
) described by:

(t) + Bu (t) + Dh (t)
(t) (1)
(t)
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terms. See for instance (Malabre M., Martinez G.J.C. and ¢
Del Muro C.B., 1997) and (Koussiouris T.G. and Tzierakis

K.G., 1996), for the static state feedback case, and (D#here:

Muro C.B. and Malabre M., 2001) or (Eldem V. and « z(:) € X ~ R" denotes the state;(-) € U ~ R™
Ozguler A.B., 1988) for a characterization of the fixed poles  the control input;h () € H ~ R? the disturbance
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input; y () € ¥ ~ RP the measurable output; andplacement. As far as the monovariable case is concerned,
z(-) € Z = R" the output to be controlled. pole placement can in fact be applied to achieve disturbance
e A X—>X,B:U—-X,D:H—X,E:X — Z,  decouplingin a very simple way, under some controllability
andC : X — Y are linear applications represented inand/or observability assumptions. The key idea behind this
particular basis by real constant matrices. statement is that oflisturbance decoupling fixed poles

o Let us notes (M) the roots of the equatiodet(sI — _ . .
M) = 0, for any state matria\/. A. Disturbance Decoupling by Static State Feedback

DSF
The Disturbance Decoupling by (static) Output Feedbac ) )
(DDOF) problem is defined as follows: The following result (presented in (Del Muro C.B. and

Martinez G.J.C., 2000)) give us necessary and sufficient
Definition 1: Disturbance Decoupling problem: by staticconditions to splve the DDSF problem in a practical and
Output Feedback (DDOF): find a static measurement feef€"y €asy way:

back:
u(t) = —ky (1) Lemma 1:Consider the disturbed system,(B, D, E),
’ under the assumptiomd( B) controllable and in the single
such that: input casef. = 1). The DDSF problem is solvable if and
(A -1 _ only if
E(sly = (A= BkC)) "D =0. E(sl, — (A—BF))"'D=0. 3)

Wheny (-) = «(-), i.e. C = I,,, we have the Disturbance
Decoupling by (static) State Feedback Problem ( DDSF). B
As far as DDSF problem is concerned, we shall not uséPPsF =~

where F' is any state feedback such thatA — BF) D
Z(AB,E)-Z(A,[B | D],E).

in the sequek but F, i.e.whenC = I, (A + BkC) = proof The proof is almost direct from the characteriza-
(A+ BF). tion of the DDOF fixed poles and noting that the
feedbackF' that place the poles in any particular
A. The Fixed Poles of the DDSF problem position is unique in the single input case. See
If the DDSF problem is solvable, then exist a familly of details in (Del Muro C.B. and Martinez G.J.C.,
feedbacku(t) = Fx(t), to decouple the disturbance. Using 2000)m

this family of solutions, some poles can be freely placed Note that the system can be multi disturbance-input (i.e.,
in the feedback system except for a set of fixed poles that> 1) and multi output.

are always present in any feedback solutidhe following Obviously, the problem can be solved with stability in a
result characterizes the only set of poles that is presesimilar way.

in any feedback system solution to the DDSF problem, Summarizing, if @, B) is controllable and in the single
independently the way the solution is obtained, i.e., thiaput case#: = 1) we have the following methodology to

DDSF fixed poles. solve DDSF:
Theorem 1:(Malabre M., Martinez G.J.C. and Del Muro 1) Obtain the "possible” Fixed Poles of DDSF,.i.e
C.B., 1997) Given the disturbed system, (B, C, D, E), oppsr =2 (A,B,E)-Z2(A,[ B | D ],E).

under the assumptiond( B) controllable. Let us consider 2 Byilt the polynomialp (ppsy) which has as its
that the DDSF problem is solvable, i.e. that there exist a ~ ,gots the Fixed Poles of DDSF.

map F' such thatF (sI,, — (A — BF))~' D = 0. Then 3) Built the desired polynomial as(\) = p (cppsr) -
0(A—BF) D oppsr p (0 free), freely assigning the roots of (o f,cc) -
4) Built the static state feedbadk such thatdet[\],, —

oppsr = Z2(A,B,E)-Z(A,[ B | D],E) (2 (A— BF)] =p()\) . Finally, if
where a multiple zero appears as many times its mul- E(sI, —(A—BF)) 'D=0

tiplicity order and whereZ(A, [«], E) are the so-called

invariant zerosof (A, [+], E). then F' solves the problem. Otherwise, DDSF is not
Remark 1:The invariant zeros of an4, [«], E) system solvable.

can easily be calculated with Matlab using the instruction Remark 2:Note that it is easy to modify this methodol-
tzero(A, [], E), indeed this set is called "transmissionogy to obtain necessary and sufficient conditions to solve
zeros” in Matlab. the DDSF problem with stability, just asking togypsr to

be a stable set.

I1l. DECOUPLINGDISTURBANCES IN THE B. Disturbance Decoupling by Static Output Feedback
MONOVARIABLE CASE: THE ROLE OF THE FIXED POLES It is obvious that the static output feedback is a particular
Since pole placement is a traditional tool to obtaircase of static state feedback. Indeeduift) = —ky (¢)
good closed-loop performance, it is natural to ask abowdecouple the disturbance, then(t) = —Fx(t) with
the conditions to achieve disturbance decoupling via polg = kC, also decouple the disturbance. Thus, a necessary



condition to solve the DDOF problem is the solvability
of the DDSF problem. In fact, as it is established in the
following proposition, a necessary and sufficient conditio
can be found if we note that the DDSF fixed poles are
contained in the set of closed-loop poles corresponding to
the DDOF problem.

Lemma 2:Consider the single input single output
p = 1) disturbed systemA4, B, C, D, E), under the
assumption 4, B) controllable and ', A) observable. The
DDOF problem is solvable if and only if there exists a real
k such that

Figure 1.
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Disturbance Decoupling by Static Output Feedback

with:
U(A—BkC):)O'DDSF (4) 1 1 0 0 1
and A= 0o -2 1 :B=1|01|;D=1|0
E(sl, — (A= BkC)) "' D=0 { 70 -3 1 o]
Note that suchk is a solution to the DDOF problem.
proof If: Obvious fromE (sI,, — (A — BkC))™' D = C=[100];E=[0 0 1]
0 where: v (t) denotes the control inpuf; (¢) the distur-

Only if: Consider that the DDOF problem is solv- bance;y (t) denotes the measurable output ant) the

able. Then the DDSF is also solvable with =
—kC, and thenE (sI,, — (A — BkC))"' D = 0.
Additionally, from the DDSF fixed poles char-
acterization, under the controllability assumption,
U(A — BkC) D UDDSF-.
If (A, B) is controllable or (,A) observable, and in

the single input single output case we have the following *®

methodology to solve DDOF:

1) Obtain the "possible” Fixed Poles, i.e.: of;, =
Z(AB,E)-Z(A,[ B | D],E).

2) Using the Root Locus technique (see for instance
(Ogata K., 1997)) and if the system igl,(B) con-
trollable, search for a static output feedbdeclsuch
thato(A — BkC) D oppsr. If such k exist and

E(sl,— (A—BkC)) 'D=0

output to be controlled.

Let us first compute the possible DDSF fixed
poles ODDSF Z(A,B,E) = {—2,—1},
Z(A,[B | D],E) = {-2}, then oy, =
{-=1}. (Use the Matlab instructiotzero(A4, B, F,0)).
From the Root Locus techniqui,= 7 is such that:

U(A — BkC) = {—1, -2, —3} D OpDDSF = {—1}

(You can use the Matlab instructiong; =
ss2tf(A, B, E,0), rlocus(Q), rlock find(Q)).

« And finally (using the Matlab instructiors2t f(A —

BkC, D, E,0)).
E (sI, — (A— BkC))"' D = 0.

then the DDOF problem is solvable and the closed

loop system solution is stable. You can appreciate
this in Figure[l, where a step disturbance is applied
att = 10 seconds. The decoupled outpt(t) is the
continuous line and the dashed line corresponds with
the measured output.

then k solves the problem. Otherwise, DDOF is not
solvable.
Remark 3:This methodologie is easily implemented
using computational software as Matlab.

Example 2
Consider the disturbed linear time-invariant systedy (

In order to illustrate the methodology previously dis-B, C, D, E) described by:

IV. ILLUSTRATIVE EXAMPLES

cussed, we proceed in this section to apply it to a particular : _
monovariable linear time-invariant disturbed systems. We xg)) - éi 8 + Bu(t) + Dh(t)
will note the associated Matlab instruction. vy =
z(t) = Ex (t)
Example 1 with:
Consider the disturbed linear time-invariant systey ( ’
B, C, D, E) described by: -1 1 0 0 1
A=| 0 1 1 |;B=|0/|:D=1]0
7 0 -3 1 0

{ z(t) = Az (t) + Bu (t) + Dh (t)
(
(
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methodology is based on a pole placement strategy consid-
ering thea priory computation of the disturbance decou-
pling fixed poles, under some controllability or observiapil
assumptions. The proposed methodology is a tool to verify

where:wu (t) denotes the inputh (¢) the disturbancey (t)
denotes the measurable output an@) the output to be
controlled.

the solvability of the problem in a very easy way.

We have also discussed the relationship between distur-
bance decoupling by static state feedback (Malabre M.,
Martinez G.J.C. and Del Muro C.B., 1997) and by static
output feedback. The solvability conditions here prestnte
ask for the possibility to place some poles by a static
output feedback exactly in the positions corresponding to
the disturbance decoupling by state feedback fixed poles.

The main interest of the above results is their simplicity.
Indeed, as far as the monovariable case is concerned, we
do not need any (geometric or structural) sophisticatet too
to verify the Disturbance Decoupling problem by static
State (or by Output) Feedback solvability; it is enough to
compute the position of some invariant zeros and obtain a
control law that places the poles in that positions. Moreove
the proposed methodology let us to directly compute a
particular solution (if the solvability conditions are ifexd).
Unfortunately, a direct extension to the general MIMO case
is not possible because the non uniqueness of the solution
in the pole placement by static state feedback.

-0.5
0

Time

Figure 2. Disturbance Decoupling by Static Output Feedback

Let us first compute the DDSF fixed pole$psr :
Z(AB,E)={1,-1}, Z(A,[ B | D],E) =
{1}, thenoy;, = {—1} (Use the Matlab instruction
tzero(A, B, E,0)).

From the Root Locus techniqui,= 7 is such that:

O'(A — BkC) = {—1, -3, 1} D OpDDSF = {—1}

(Use the Matlab instruction§& = ss2tf(A, B, E,0),
rlocus(Q), rlock find(Q)).

Cheking transfer function:
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V. FINAL COMMENTS

We have present in this paper new results concerning
the disturbance decouple by static output feedback and
a methodology to decouple the disturbance (when possi-
ble) acting in linear time-invariant systems. Our proposed
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