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Culhuacan, Instituto Politécnico Nacional, Santa Ana 1000, Coyoacán, D.F., 04430, México,
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Abstract— It is well known that when a feedback control
law is chosen to solve a particular problem, usually there exist
some fixed poles in the closed-loop system, i.e. closed-loop
fixed poles that do not depend on the choice of the control
law but precisely on the fact that this particular problem is
being solved. In this paper we present new results concerning
the disturbance decoupling by static output feedback.
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I. I NTRODUCTION

Since the geometric theory of linear multivariable sys-
tems appeared (60-70’s), a large number of control prob-
lems has been solved using this tool, such as disturbance
rejection, input-output decoupling, regulation and failure
detection problems (see for instance (Wonham W.M., 1993)
and (Basile G. and Marro G., 1992)) This paper deals
with the disturbance decoupling problem and their solution
using the fixed poles characterization. This approach is
very simple to understand and to implement using control
software like Matlab.

Exact disturbance decoupling, as a control objective, is a
common task in control engineering. In fact, disturbance de-
coupling is one of the most familiar problems in control the-
ory for which many contributions have already been brought
(e.g. (Eldem V. and Ozguler A.B., 1988), (Schumacher
J.M., 1980) and (Willems J.C. and Commault C., 1981)
). On the other hand, pole placement is a common control
strategy (see for instance (T. Kailath, 1980)) for achieving
specific closed-loop performances. It is then natural to ask
about the connection between exact disturbance decoupling
and pole placement. In addition, it is well known that
when a feedback control law is chosen in order to solve
a particular problem, usually exist some fixed poles in the
closed-loop system, i.e. closed-loop fixed poles that do not
depend on the choice of the control law but precisely on
the fact that this particular problem is being solved. As
far as the disturbance decoupling is concerned, the fixed
poles have been characterized in geometric and algebraic
terms. See for instance (Malabre M., Martı́nez G.J.C. and
Del Muro C.B., 1997) and (Koussiouris T.G. and Tzierakis
K.G., 1996), for the static state feedback case, and (Del
Muro C.B. and Malabre M., 2001) or (Eldem V. and
Ozguler A.B., 1988) for a characterization of the fixed poles

when applying dynamic output feedback.
As a consequence of the research concerning disturbance

decoupling, fixed poles, and pole placement, it is clear
that disturbance decoupling can be achieved through pole
placement, under certain structural constraints.

In this paper we present a new results concerning the
disturbance decoupling problem in terms of pole placement
using a static output feedback in the monovariable case.
We discuss too, the static state feedback for monovariable
systems, which is a methodology previously developed in
(Del Muro C.B. and Martı́nez G.J.C., 2000), being the base
to design a static output feedback achieving disturbance
decoupling.

The main interest of this new approach is their simplicity:
even if the results are based in geometric tools, we don’t
need to compute any geometric subspace to use the results
here presented.

The paper is organized as follows. In Section 2 we revisit
the main results concerning the disturbance decoupling by
static output feedback. In particular, we recall the charac-
terization of the fixed poles for this problem.

In Section 3 we present necessary and sufficient solv-
ability conditions for the existence of a solution for the
disturbance decoupling problem by state feedback and static
output feedback. We present a methodology to decouple
disturbance (when possible) via static state feedback and
static output feedback which is the main result, under some
controllability or observability assumptions. This methodol-
ogy is based in thea priory computation of the ”possible”
Disturbance Decoupling fixed poles. In Section 4 we present
illustrative examples and we conclude in Section 5 with
some final comments.

II. T HE DISTURBANCE DECOUPLING PROBLEM

Consider the linear time-invariant system (A, B, C, D,
E) described by:







·

x (t) = Ax (t) + Bu (t) + Dh (t)
y (t) = Cx (t)
z (t) = Ex (t)

(1)

where:

• x (·) ∈ X ≈ R
n denotes the state;u (·) ∈ U ≈ R

m

the control input;h (·) ∈ H ≈ R
q the disturbance
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input; y (·) ∈ Y ≈ R
p the measurable output; and

z (·) ∈ Z ≈ R
r the output to be controlled.

• A : X → X , B : U → X , D : H → X , E : X → Z,

andC : X → Y are linear applications represented in
particular basis by real constant matrices.

• Let us noteσ(M) the roots of the equationdet(sI −
M) = 0, for any state matrizM .

The Disturbance Decoupling by (static) Output Feedback
(DDOF) problem is defined as follows:

Definition 1: Disturbance Decoupling problem: by static
Output Feedback (DDOF): find a static measurement feed-
back:

u (t) = −ky (t) ,

such that:

E (sIn − (A − BkC))
−1

D ≡ 0.

When y (·) = x (·), i.e. C = In, we have the Disturbance
Decoupling by (static) State Feedback Problem ( DDSF).

As far as DDSF problem is concerned, we shall not use
in the sequelk but F , i.e.,whenC = In, (A + BkC) =
(A + BF ) .

A. The Fixed Poles of the DDSF problem

If the DDSF problem is solvable, then exist a familly of
feedbacku(t) = Fx(t), to decouple the disturbance. Using
this family of solutions, some poles can be freely placed
in the feedback system except for a set of fixed poles that
are always present in any feedback solution. The following
result characterizes the only set of poles that is present
in any feedback system solution to the DDSF problem,
independently the way the solution is obtained, i.e., the
DDSF fixed poles.

Theorem 1:(Malabre M., Martı́nez G.J.C. and Del Muro
C.B., 1997) Given the disturbed system (A, B, C, D, E),
under the assumption (A, B) controllable. Let us consider
that the DDSF problem is solvable, i.e. that there exist a
mapF such thatE (sIn − (A − BF ))

−1
D ≡ 0. Then

σ(A − BF ) ⊃ σDDSF

σDDSF = Z (A, B, E)−Z
(

A,
[

B | D
]

, E
)

(2)

where a multiple zero appears as many times its mul-
tiplicity order and whereZ(A, [∗], E) are the so-called
invariant zerosof (A, [∗], E).

Remark 1:The invariant zeros of an(A, [∗], E) system
can easily be calculated with Matlab using the instruction
tzero(A, [∗], E), indeed this set is called ”transmission
zeros” in Matlab.

III. D ECOUPLINGDISTURBANCES IN THE

MONOVARIABLE CASE: THE ROLE OF THE FIXED POLES

Since pole placement is a traditional tool to obtain
good closed-loop performance, it is natural to ask about
the conditions to achieve disturbance decoupling via pole

placement. As far as the monovariable case is concerned,
pole placement can in fact be applied to achieve disturbance
decoupling in a very simple way, under some controllability
and/or observability assumptions. The key idea behind this
statement is that ofdisturbance decoupling fixed poles.

A. Disturbance Decoupling by Static State Feedback
DDSF

The following result (presented in (Del Muro C.B. and
Martı́nez G.J.C., 2000)) give us necessary and sufficient
conditions to solve the DDSF problem in a practical and
very easy way:

Lemma 1:Consider the disturbed system (A, B, D, E),
under the assumption (A, B) controllable and in the single
input case(m = 1). The DDSF problem is solvable if and
only if

E (sIn − (A − BF ))
−1

D ≡ 0. (3)

where F is any state feedback such thatσ(A − BF ) ⊃
σDDSF = Z (A, B, E) −Z

(

A,
[

B | D
]

, E
)

.

proof The proof is almost direct from the characteriza-
tion of the DDOF fixed poles and noting that the
feedbackF that place the poles in any particular
position is unique in the single input case. See
details in (Del Muro C.B. and Martı́nez G.J.C.,
2000).�

Note that the system can be multi disturbance-input (i.e.,
q ≥ 1) and multi output.

Obviously, the problem can be solved with stability in a
similar way.

Summarizing, if (A, B) is controllable and in the single
input case (m = 1) we have the following methodology to
solve DDSF:

1) Obtain the ”possible” Fixed Poles of DDSF, i.e.
σDDSF = Z (A, B, E) −Z

(

A,
[

B | D
]

, E
)

.
2) Built the polynomialp (σDDSF ) which has as its

roots the Fixed Poles of DDSF.
3) Built the desired polynomial asp (λ) = p (σDDSF ) ·

p (σfree), freely assigning the roots ofp (σfree) .

4) Built the static state feedbackF, such thatdet[λIn −
(A − BF )] = p (λ) . Finally, if

E (sIn − (A − BF ))
−1

D ≡ 0

then F solves the problem. Otherwise, DDSF is not
solvable.

Remark 2:Note that it is easy to modify this methodol-
ogy to obtain necessary and sufficient conditions to solve
the DDSF problem with stability, just asking toσDDSF to
be a stable set.

B. Disturbance Decoupling by Static Output Feedback

It is obvious that the static output feedback is a particular
case of static state feedback. Indeed, ifu (t) = −ky (t)
decouple the disturbance, thenu (t) = −Fx (t) with
F = kC, also decouple the disturbance. Thus, a necessary
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condition to solve the DDOF problem is the solvability
of the DDSF problem. In fact, as it is established in the
following proposition, a necessary and sufficient condition
can be found if we note that the DDSF fixed poles are
contained in the set of closed-loop poles corresponding to
the DDOF problem.

Lemma 2:Consider the single input single output (m =
p = 1) disturbed system (A, B, C, D, E), under the
assumption (A, B) controllable and (C, A) observable. The
DDOF problem is solvable if and only if there exists a real
k such that

σ(A − BkC) ⊃ σDDSF (4)

and
E (sIn − (A − BkC))

−1
D ≡ 0

Note that suchk is a solution to the DDOF problem.

proof If: Obvious fromE (sIn − (A − BkC))−1
D ≡

0.

Only if: Consider that the DDOF problem is solv-
able. Then the DDSF is also solvable withF =
−kC, and thenE (sIn − (A − BkC))

−1
D ≡ 0.

Additionally, from the DDSF fixed poles char-
acterization, under the controllability assumption,
σ(A − BkC) ⊃ σDDSF .�

If (A, B) is controllable or (C,A) observable, and in
the single input single output case we have the following
methodology to solve DDOF:

1) Obtain the ”possible” Fixed Poles, i.e.: σfix =
Z (A, B, E) −Z

(

A,
[

B | D
]

, E
)

.
2) Using the Root Locus technique (see for instance

(Ogata K., 1997)) and if the system is (A, B) con-
trollable, search for a static output feedbackk such
that σ(A − BkC) ⊃ σDDSF . If such k exist and

E (sIn − (A − BkC))
−1

D ≡ 0

then k solves the problem. Otherwise, DDOF is not
solvable.

Remark 3:This methodologie is easily implemented
using computational software as Matlab.

IV. I LLUSTRATIVE EXAMPLES

In order to illustrate the methodology previously dis-
cussed, we proceed in this section to apply it to a particular
monovariable linear time-invariant disturbed systems. We
will note the associated Matlab instruction.

Example 1
Consider the disturbed linear time-invariant system (A,

B, C, D, E) described by:






·

x (t) = Ax (t) + Bu (t) + Dh (t)
y (t) = Cx (t)
z (t) = Ex (t)
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Figure 1. Disturbance Decoupling by Static Output Feedback

with:

A =





−1 1 0
0 −2 1
7 0 −3



 ; B =





0
0
1



 ; D =





1
0
0





C =
[

1 0 0
]

; E =
[

0 0 1
]

where:u (t) denotes the control input;h (t) the distur-
bance;y (t) denotes the measurable output andz (t) the
output to be controlled.

• Let us first compute the possible DDSF fixed
poles σDDSF : Z (A, B, E) = {−2,−1} ,

Z
(

A,
[

B | D
]

, E
)

= {−2} , then σfix =
{−1} . (Use the Matlab instructiontzero(A, B, E, 0)).

• From the Root Locus technique,k = 7 is such that:

σ(A − BkC) = {−1,−2,−3} ⊃ σDDSF = {−1}

(You can use the Matlab instructionsG =
ss2tf(A, B, E, 0), rlocus(G), rlockfind(G)).

• And finally (using the Matlab instructionss2tf(A −
BkC, D, E, 0)).

E (sIn − (A − BkC))−1
D = 0.

then the DDOF problem is solvable and the closed
loop system solution is stable. You can appreciate
this in Figure 1, where a step disturbance is applied
at t = 10 seconds. The decoupled outputz(t) is the
continuous line and the dashed line corresponds with
the measured output.

Example 2
Consider the disturbed linear time-invariant system (A,

B, C, D, E) described by:






·

x (t) = Ax (t) + Bu (t) + Dh (t)
y (t) = Cx (t)
z (t) = Ex (t)

with:

A =





−1 1 0
0 1 1
7 0 −3



 ; B =





0
0
1



 ; D =





1
0
0





C =
[

1 0 0
]

; E =
[

0 0 1
]
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Figure 2. Disturbance Decoupling by Static Output Feedback

where:u (t) denotes the input;h (t) the disturbance;y (t)
denotes the measurable output andz (t) the output to be
controlled.

• Let us first compute the DDSF fixed polesσDDSF :
Z (A, B, E) = {1,−1} , Z

(

A,
[

B | D
]

, E
)

=
{1} , then σfix = {−1} (Use the Matlab instruction
tzero(A, B, E, 0)).

• From the Root Locus technique,k = 7 is such that:

σ(A − BkC) = {−1,−3, 1} ⊃ σDDSF = {−1}

(Use the Matlab instructionsG = ss2tf(A, B, E, 0),
rlocus(G), rlockfind(G)).

• Cheking transfer function:

E (sIn − (A − BkC))−1
D = 0.

(Use the Matlab instructionss2tf(A−BkC, D, E, 0)).
Note than the DDOF problem is solvable, but without
stability becauseσ(A − BkC) = {−1,−3, 1}

• Now we can solve the previous problem using DDSF
seeking stability.

• We can built the desired polynomial asp (λ) =
p (σfix) · p (σfree), considering for instanceσfree =
−2,−3. Thenp (λ) = (λ + 1)(λ + 2)(λ + 3).

• We compute F such that p (A − BF ) = (λ +
1)(λ + 2)(λ + 3). In this case we easily getF =
[

7 12 3
]

(Use the Matlab instructionF =
place(A, B, [−1,−2,−3]).

• We can verify that for the current example, the DDSF
problem is solvable:

E (sIn − (A − BF ))
−1

D ≡ 0.

(Use the Matlab instructionss2tf(A−BF, D, E, 0)).

As can be noted, the DDSF problem is solved with
stability becauseσ(A − BF ) = {−1,−2,−3} .You can
appreciate this result in Figure 2, where a step disturbance
is applied att = 10 seconds. The decoupled outputz(t) is
the continuous line and the dashed line corresponds with
the measured output.

V. FINAL COMMENTS

We have present in this paper new results concerning
the disturbance decouple by static output feedback and
a methodology to decouple the disturbance (when possi-
ble) acting in linear time-invariant systems. Our proposed

methodology is based on a pole placement strategy consid-
ering thea priory computation of the disturbance decou-
pling fixed poles, under some controllability or observability
assumptions. The proposed methodology is a tool to verify
the solvability of the problem in a very easy way.

We have also discussed the relationship between distur-
bance decoupling by static state feedback (Malabre M.,
Martı́nez G.J.C. and Del Muro C.B., 1997) and by static
output feedback. The solvability conditions here presented
ask for the possibility to place some poles by a static
output feedback exactly in the positions corresponding to
the disturbance decoupling by state feedback fixed poles.

The main interest of the above results is their simplicity.
Indeed, as far as the monovariable case is concerned, we
do not need any (geometric or structural) sophisticated tool
to verify the Disturbance Decoupling problem by static
State (or by Output) Feedback solvability; it is enough to
compute the position of some invariant zeros and obtain a
control law that places the poles in that positions. Moreover,
the proposed methodology let us to directly compute a
particular solution (if the solvability conditions are verified).
Unfortunately, a direct extension to the general MIMO case
is not possible because the non uniqueness of the solution
in the pole placement by static state feedback.
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