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Abstract— In this paper, the trajectory-tracking control
problem without velocity measurement of an omnidirectional
mobile robot (also known as a type (3,0)) is addressed and
solved. It is shown that the conjunction of a passivity based
controller and an Immersion and Invariance velocity observer
produces an asymptotically stable closed–loop dynamics.
Different from the classical approach that consider only
the kinematic model, the proposed partial state feedback
controller is designed taking into account the dynamic model.
Numerical simulations are carried out to show the overall
performance of the proposed scheme.
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I. INTRODUCTION

In modern robotic systems, omnidirectional mobile robots

have vast advantages compared to conventional robot de-

signs in terms of mobility in congested environments. Such

a capability gives to this class of mobile robots the potential

to solve a number of challenges in industry and society.

However, to fully exploit this mobility advantage it is

necessary to implement an appropriate trajectory-tracking

strategy.

The traditional control problems of trajectory-tracking

and regulation have been extensively studied in the field

of mobile robotics. In particular, the differential and the

omnidirectional mobile robots, also known, respectively, as

the (2,0) and the (3,0) robots (see (Bétourné and Cam-

pion, 1996), (Kalmár-nagy et al., 2004)), have attracted the

interest of many control researchers.

It is a common practice in mobile robotics to address

control problems taking into account only a kinematic

representation. This approach assume that there exists a

high level controller that ensures perfect velocity tracking.

Unfortunately, the velocity tracker design is far from been

obvious.

The regulation and trajectory-tracking problems of the

omnidirectional mobile robot (3,0), has also received sus-

tained attention. Following the approach that considers only

the kinematic model, in (Liu et al., 2003) it is designed

a nonlinear controller based on a Trajectory Linearization

strategy and in (Velasco-Villa, Alvarez-Aguirre and Rivera-

Zago, 2007), the remote control of the (3,0) mobile robot

is developed based on a discrete-time strategy assuming a

time-lag model of the robot. In (Velasco-Villa, del Muro-

Cuellar and Alvarez-Aguirre, 2007) the trajectory-tracking

problem is solved by means of an estimation strategy that

predicts the future values of the system based on the exact

nonlinear discrete-time model of the robot.

A reduced number of contributions have been focused

on the dynamic model of the (3,0) robot. For example, in

(Carter et al., 2001), it is described the mechanical design

of the robot and based on its dynamic model it is proposed

a PID control for each robot wheel. Authors in (Bétourné

and Campion, 1996) consider an Euler-Lagrange model

formulation and present an output feedback controller that

solves the trajectory-tracking problem. In the same manner,

in (Williams et al., 2002) the dynamic model of the mobile

robot is considered to study the slipping effects between the

wheels of the vehicle and the working surface. In (Vázquez

and Velasco-Villa, 2008) the trajectory tracking problem is

addressed and solved by considering a modification of the

well known Computed-Torque strategy. Finally, in (Kalmár-

nagy et al., 2004) the time-optimization problem of a

desired trajectory is considered for a mobile robot subject

to admissible input limits in order to obtain feedback laws

that are based on the kinematic and dynamic models.

In this paper, we address and solve the trajectory-tracking

problem of an omnidirectional mobile robot without veloc-

ity measurement. We show that the combination of a full

information control strategy that renders the closed–loop

dynamics globally asymptotically stable and a globally ex-

ponentially convergent velocity observer produces a partial

state feedback controller that preserves asymptotic stability.

This paper is organized as follows: Section II presents

the dynamic model of the considered mobile robot. Immedi-

ately, in Section III we present one of the main contributions

of this paper, the velocity observer. Section IV, is devoted

to the full information controller whereas in Section V

we propose and analyse the partial state feedback control

strategy. The evaluation through numerical simulations of

the partial state feedback controller is performed in Section

VI. Finally, Section VII presents some conclusions.

II. OMNIDIRECTIONAL MOBILE ROBOT

A top view of the configuration of a (3,0) mobile robot is

depicted in Figure 1. The mobile reference frame Xm−Ym

is located at the center of mass of the vehicle with the Xm

axis aligned with respect to the wheel 3. Wheels 1 and 2 are
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Figura 1. Omnidirectional Mobile Robot

placed symmetrically with an angle � = 30∘ with respect to

the Ym axis. The fixed reference frame X−Y provides the

absolute localization of the vehicle on the workspace. The

mobile robot is of the type (Canudas et al., 1996) (�m, �s) =
(3, 0), this is, it has three degrees of mobility and zero

degrees of steerability allowing the displacements of the

vehicle in all directions instantaneously.

A. Dynamic Model

A simple analysis of the velocity constrains (Campion

et al., 1996) on Figure 1 produces,

J1R(�)q̇ − J2'̇ = 0 (1)

with, q =
[

x y �
]⊤

, and

J1 =

⎡

⎣

− sin � cos � L

− sin � − cos � L

1 0 L

⎤

⎦ , J2 =

⎡

⎣

r 0 0
0 r 0
0 0 r

⎤

⎦

R(�) =

⎡

⎣

cos� sin� 0
− sin� cos� 0

0 0 1

⎤

⎦ , ' =

⎡

⎣

'1

'2

'3

⎤

⎦

where '1, '2, '3 represent the angular displacements of

wheels one, two and three, respectively; � is the orientation

of the i-wheel with respect to its longitudinal axis; L is the

distance between the center of each wheel and the center

of the vehicle and r is the radius of each wheel.

Following (Campion et al., 1996)-(Canudas et al., 1996),

the kinetic energy of the robot is given by the wheel

rotational energy plus the translational and rotational energy

of the robot. Therefore, the Lagrangian of the system is

obtained as,

ℒ =
1

2
q̇TRT (�)MR(�)q̇ +

1

2

3
∑

i=1

'̇i
T Ir'̇i, (2)

with M = diag {Mp,Mp, Ip} and Ir = diag {I', I', I'}.

Mp is the vehicle mass and Ip the moment of inertia about

the Z axis of the vehicle, I' is the moment of inertia of

each wheel about its rotation axis.

Considering that the kinematics restrictions (1) are satis-

fied for all t, from the Euler-Lagrange equations we obtain

Dq̈ + C(q̇)q̇ = B�, (3)

where,

D =

⎡

⎣

d1 0 0
0 d1 0
0 0 d3

⎤

⎦ , C(q̇) = a

⎡

⎣

0 �̇ 0

−�̇ 0 0
0 0 0

⎤

⎦ ,

B = 1
r

⎡

⎣

− sin (� + �) − sin (� − �) cos�
cos (� + �) − cos (� − �) sin�

L L L

⎤

⎦ ,

with d1 = Mp +
3Ir
2r2 , d3 = Ip +

3IrL
2

r2
and a = 3Ir

2r2 .

Note that the vector C(q̇)q̇ does not possess a unique

parameterization. For our developments, we consider the

following parameterization,

C(q̇)q̇ = a

⎡

⎣

0 �̇ 0

−�̇ 0 0
0 0 0

⎤

⎦ q̇

= a
2

⎡

⎣

0 �̇ ẏ

−�̇ 0 −ẋ

−ẏ ẋ 0

⎤

⎦ q̇ = Ca(q̇)q̇.

III. VELOCITY OBSERVER

This Section contains one of the main contributions of

this paper, a velocity observer. This observer is based on

the Inmmersion and Invariance nonlinear design technique

introduced in (Astolfi et al., 2008).

Consider the following general dynamic model of me-

chanical systems

ẋ1 = Φ(x1)x2

ẋ2 = B(x1)u+ �(x, t),
(4)

where x1 is the angular or translational position, x2 is the

angular or translational velocity and u is the control force.

We assume that �(x, t) models all the rest of the me-

chanical system dynamics. Moreover, we assume that there

exists � such that1

�(x, t)(�) = 0. (5)

Define now the estimation errors as:

z1 = x2 − x̂2 − �1(x1)

z2 = � − �1 − �2(x1)

z3 = �̇ − �2 − �3(x1)

...
...

z�+1 = �(�−1) − �� − ��+1(x1).

(6)

1In the following x(�)
=

d
�

dt�
x.
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Straightforward computations show that,

ż1 = B(x1)u+ � − ˙̂x2 −
∂�1

∂x1
[Φ(x1)x2]

ż2 = �̇ − �̇1 −
∂�2

∂x1
[Φ(x1)x2]

ż3 = �̈ − �̇2 −
∂�3

∂x1
[Φ(x1)x2]

...
...

ż�+1 = −�̇� − ∂��+1

∂x1
[Φ(x1)x2] .

In terms of the estimation errors the dynamics above

reads as,

ż1 = B(x1)u + z2 + �1 + �2 − ˙̂x2

−∂�1

∂x1
[Φ(x1) (z1 + x̂2 + �1)]

ż2 = z3 + �2 + �3 − �̇1

−∂�2

∂x1
[Φ(x1) (z1 + x̂2 + �1)]

ż3 = z4 + �3 + �4

−�̇2 −
∂�3

∂x1
[Φ(x1) (z1 + x̂2 + �1)]

...
...

ż�+1 = −�̇� − ∂��+1

∂x1
[Φ(x1) (z1 + x̂2 + �1)] .

Let the following definition be made,

˙̂x2 = B(x1)u+ �1 + �2 −
∂�1

∂x1
[Φ(x1) (x̂2 + �1)]

�̇1 = �2 + �3 −
∂�2

∂x1
[Φ(x1) (x̂2 + �1)]

�̇2 = �3 + �4 −
∂�3

∂x1
[Φ(x1) (x̂2 + �1)]

...
...

�̇� = −∂��+1

∂x1
[Φ(x1) (x̂2 + �1)] .

(7)

As a result of the previous definition the estimation error

dynamics becomes,

ż1 = z2 −
∂�1

∂x1
[Φ(x1)z1]

ż2 = z3 −
∂�2

∂x1
[Φ(x1)z1]

ż3 = z4 −
∂�3

∂x1
[Φ(x1)z1]

...
...

ż�+1 = −∂��+1

∂x1
[Φ(x1)z1] .

(8)

Consider now,

∂�i

∂x1
= CiΦ(x1)

−1, i = 1, ⋅ ⋅ ⋅�+ 1, (9)

then, we have that,

ż1 = z2 − C1z1

ż2 = z3 − C2z1

ż3 = z4 − C3z1

...
...

ż�+1 = −C�+1z1

(10)

which can be expressed as,

z
(�+1)
1 − C1z

(�)
1 − C2z

(�−1)
1 − ⋅ ⋅ ⋅ − C�+1z1 = 0. (11)

We are now in position to present our velocity observer.

Proposition 1: Assume that there exist � and �i(x1), i =
1, ⋅ ⋅ ⋅ , �+ 1 such that (5) and (9) respectively hold. Then,

there exists Ci, i = 1, ⋅ ⋅ ⋅ , �+ 1 such that (7) is a velocity

observer for system (4) in the sense that,

[x̂2 + �1(x1)] → x2

exponentially.

Proof: Note that the observation error dynamics is

described by the differential equation (11). This is a linear

differential equation so that it is always possible to select

Ci, i = 1, ⋅ ⋅ ⋅ , � + 1 in such a way that z1 exponentially

converges to zero.

IV. FULL STATE FEEDBACK CONTROLLER FOR THE (3,0)

ROBOT.

The full information controller is designed following

ideas developed in the field of power electronics addressed

as: Exact Tracking Error Dynamics Passive Output Feed-

back (ETEDPOF) (Sira-Ramı́rez, 2005), (Sira-Ramı́rez and

Rodrı́guez-Cortés, 2008).

For, note that the dynamic model of the omnidirectional

mobile robot (3) in closed loop with the controller

� = B−1 (−x1 + u) (12)

can be expressed in terms of the following model of

physical systems,

Aẋ = J (x, u)x −ℛ(x, u)x+ ℬ(x)u+ ℰ(t)
y = ℬ⊤x,

(13)

with x =
[

x⊤
1 x⊤

2

]⊤
,

q = x1 =

⎡

⎣

x11

x12

x13

⎤

⎦ , q̇ = x2 =

⎡

⎣

x21

x22

x23

⎤

⎦ . (14)

and

A =

[

I 0
0 D

]

, J (x, u) =

[

0 I

−I −Ca(x2)

]

,

ℛ(x, u) =

[

0 0
0 0

]

, ℬ(x) =

[

0
I

]

,

where I is the 3 × 3 identity matrix. As stated in (Sira-

Ramı́rez, 2005) system (13) can be expressed in terms of

error coordinates dynamics as follows,

Aė = [J ∗(x, u, t)−ℛ∗(x, u, t)] e+ ℬ∗(x, t)eu

ye = ℬ∗(x, t)⊤e
(15)

where e = x− x∗, eu = u− u∗ with x∗ a feasible smooth

bounded reference trajectory for which there exist a smooth

open loop control input u∗, such that all trajectories starting

at x(0) = x∗(0), the tracking error e is identically zero for
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all t ≥ 0. And, in particular for the closed–loop dynamics

(3)-(12), one has,

J ∗(x, u, t) =

[

0 I

−I J∗
22

]

, ℛ∗(x, u, t) =

[

0 0
0 R∗

22

]

,

ℬ∗ =
[

0 I
]

,⊤

(16)

with

J∗

22 =

⎡

⎣

0 −ax23 − ax∗
23 −ax22

ax23 + ax∗
23 0 ax21

ax22 −ax21 0

⎤

⎦

and

R∗

22 =

⎡

⎣

0 0 ax∗
22

0 0 −ax∗
21

ax∗
22 −ax∗

21 0

⎤

⎦ .

As a result of this, we have:

Proposition 2: Consider the dynamic model of the om-

nidirectional mobile robot (3) in closed loop with the

controller

� = B−1 [−x1 + u∗ −K1e1 −K2e2] (17)

where K1 and K2 are symmetric positive definite matrices.

Assume that there exist smooth bounded reference trajec-

tories x∗
1, x2(t)

∗ and a smooth open loop control input

u∗. Then, for any 
3 > 0, the closed–loop system (3)-

(17) renders the equilibrium point e1 = 0, e2 = 0 globally

asymptotically stable.

Proof: To show the convergence of the tracking error

notice first that (e1, e2) = (0, 0) is an equilibrium point of

the closed–loop system (3)-(17). Consider, now a candidate

Lyapunov function of the form,

V (e1, e2) =
1

2
eT2 De2 +

1

2
eT1 e1 + �eT1 De2 +

1

2
�eT1 K2e1.

(18)

It is not difficult to see that this function is positive

definite for sufficiently small �. Taking the time derivative

of equation (18) along the closed–loop system (3)-(17) we

obtain,

V̇ = −�eT1 [I +K1] e1 − eT2 [R∗

22 +K2 − �D] e2 (19)

+ �eT1 [(J∗

22 −R∗

22)−K1] e2.

Note now that R∗
22 can be written as R∗

22 = aF (x2d) with,

F (x2d) =

⎡

⎣

0 0 x22d

0 0 −x21d

x22d −x21d 0

⎤

⎦ ,

and also, J∗
22 − R∗

22 can be rewritten as J∗
22 − R∗

22 =
Ca(e2) + aG(x2d) with

G(x2d) =

⎡

⎣

0 −x23d −x22d

x23d 0 x21d

0 0 0

⎤

⎦ .

. From the fact that,

∥F (x2d)∥ ≤ ∥x2d∥ and ∥G(x2d)∥ ≤ ∥x2d∥ ,

lengthy but simple computations show that,

V̇ ≤ −
{

[�m(K1) + �] ∥e1∥
2
+
[

�m(K2) + �m(R∗

22)

− ��M (D)− a ∥x2d∥ − �a ∥e1∥
]

∥e2∥
2

− [��M (R∗

22) + �a ∥x2d∥+ �M (k1)] ∥e1∥ ∥e2∥} .

Notice now that the above relation can be rewritten as:

V̇ ≤ −∥e∥
⊤
P∥ ∥e∥

with e =
[

e⊤1 e⊤2
]⊤

, and

P =

[

[�m(K1) + �] p12
p12 p22

]

,

where

p12 = − 1
2 [��M (R∗

22) + �a ∥x2d∥+ �M (K1)]
p22 = �m(K2) + �m(R∗

22)− ��M (D)− a ∥x2d∥
−�a ∥e1∥ .

Therefore, the closed-loop system will be stable if the

conditions,
(i) �m(K1) + � > 0
(ii) det{P} > 0

are satisfied. Condition (i) is trivially satisfied while con-

dition (ii) can be written as a second order function of �,

that is,

− 
1�
2 + 
2� + 
3 > 0 (20)

where,


1 = �M (D) + a ∥e1∥+
1

4
[�M (R∗

22) + a ∥x2d∥]
2


2 = �m(K2) + �m(R22)− a ∥x2d∥

− �m(K1) [�M (D) + a ∥e1∥]

− �M (K1) [�M (R∗

22) + a ∥x2d∥]


3 = �m(K1) [�m(K2) + �m(R22)− a ∥x2d∥]

−
1

4
�2
M (K1).

It is clear now, from equation (20), that the system will

be asymptotically stable for a sufficiently small �. Notice

that when � → 0 the required stability condition is reduced

to 
3 > 0 that can be easily obtained by an adequate

selection of the control gains together with a bounded

desired velocity. This completes the proof.

V. PARTIAL STATE FEEDBACK CONTROLLER

In this section we present a partial state feedback con-

troller for the same vehicle. This control strategy is obtained

by combining the full information controller (17) with the

velocity observer presented in Proposition 2.

Proposition 3: Let � = 3. Consider the omnidirectional

mobile robot dynamics (3) in closed–loop with the dynamic

controller

� = B−1 [−x1 + u∗ −K1e1 −K2 (x̂2 + C1x1 − x∗

2)]
(21)
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where

˙̂x2 = B� + �1 + C2x1 − C1 [(x̂2 + C1x1)]

�̇1 = �2 + C3x1 − C2 [(x̂2 + C1x1)]

�̇2 = −C3 [(x̂2 + C1x1)]

(22)

with

Ci = diag {ci1, ci2, ci3} , i = 1, 2, 3

Then, there exists positive definite matrices Ci, i = 1, 2, 3
such that all trajectories of the closed–loop system are

bounded and are such that

lim
t→∞

x = x∗

Proof: Straight forward computations show that the

mobile robot dynamics (3) can be expressed in the form of

system (4) with Φ(x) = I . Thus, it follows that (22) is a

velocity observer for (3) in the sense of Proposition 1 with

�i = Cix1, i = 1, 2, 3

therefore, the velocity observation error satisfies the follow-

ing differential equation,

z
(3)
1 + C1z̈1 + C2ż1 + C3z1 = 0 (23)

with

z1 = x2 − x̂2 − C1x1. (24)

Note now that, taking into account (24), the partial state

feedback (21) can be written as follows

� = B−1 [−x1 + u∗ −K1e1 −K2e2] +B−1K2z1 (25)

that is, it is obtained the full information controller (17)

perturbed by a vanishing additive term. Consider now the

Lyapunov function (18). Straight forward computations give

V̇ ≤ −∥e∥
⊤
P∥ ∥e∥+ �∥e∥∥z1∥

with � a positive definite constant. Thus, by Theorem 4.7

of (Sepulchre et al., 1997) we conclude that the closed–

loop dynamics (3)-(25) is globally asymptotically stable.

Note that the term that interconnects the closed-loop dy-

namics (3)-(25) with the velocity observer dynamics (23) is

bounded by a linear term in z1.e.

VI. NUMERICAL SIMULATIONS

We carried out numerical simulations to assess the perfor-

mance of the controller given in Proposition 3. The values of

the parameters correspond to a laboratory prototype built in

our institution and they are Mp = 9.58Kg, Ir = 0.52Kgm2,

L = 0.1877m, r = 0.03812m and � = 30o. The initial con-

ditions of the mobile robot are x1(0) =
[

0, 0, 0.45
]⊤

and x2(0) =
[

0, 0, 0
]⊤

. The controller parameters

are summarized in Table I while the ones corresponding to

the observer are ci1 = 504, ci2 = 191 and ci3 = 24 for

i = 1, 2, 3.

It is desired to follow a circular trajectory or radius

0.5m centered at the origin with initial conditions x1d(0) =
[

0.5, 0, �
2

]⊤
.

Parameter Value Parameter Value

k11 200 k21 200

k12 200 k22 200

k13 100 k23 100

r1, r2 200 r3 30

TABLE I

FEEDBACK CONTROL LAW PARAMETERS
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Figura 2. Evolution on the X − Y plane.

On Figure 2 it is shown the evolution on the plane of the

mobile robot when it is considered the proposed observer

based control strategy. The evolution of the position errors

are shown on Figure 3. The observer error convergence is

depicted on Figure 4. The closed-loop torque input signals

are shown on Figure 5.

VII. CONCLUSIONS

The trajectory-tracking problem for the omnidirectional

mobile robot considering its dynamic model and without

velocity measurement has been addressed and solved by

means of a partial state time varying feedback based on

a methodology that exploits the passivity properties of the

exact tracking error dynamics and an globally exponentially

convergent velocity observer. The asymptotic stability of

the closed loop system interconnected with the velocity

observer is formally proved. Numerical simulations are

proposed to illustrate the properties of the plant-controller-

observer dynamics.
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