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Abstract�State estimation for uncertain systems affected
by external noises is an important problem in control theory
even for continuous and discrete systems. This paper deals
with the state observation problem when the dynamic model
of a plant contains uncertainties or is partially unknown and
it is oriented to discrete time nonlinear systems because most
of the existent results have been developed for continuous time
systems. The recurrent neural network (RNN) have shown his
advantages to deal with this class of problem. The Lyapunov
second method is applied to generate a new learning law,
containing an adaptive adjustment rate, implying the stability
condition for the free parameters of the neural-observer. A
numerical example is given using the RNN in the estimation
of a mathematical model of HIV infection with three states.
Palabras clave: Neural Networks, Discrete Systems, Uncertain
Models, Adaptive State Estimation.

I. INTRODUCCTION

Neural Networks (NN) have shown good identi�cation
properties in the presence of mathematical model uncer-
tainties and external disturbances. There exist two main
classes of NN: the static one, using the well known,
backpropagation algorithm (Haykin, 2nd ED, 1999), and
dynamic neural networks (DNN). The �rst one deal with
the class of global optimization problems trying to adjust
the weights of such NN to minimize the identi�cation error.
The second approach, exploits the feedback properties to
develop a learning process based in an adequate feedback
design. Dynamic Neural Observers are studied in (Poznyak
et al., 2001).
The design of state observing algorithms is usually

dependent on the access to the mathematical description
for the nonlinear system. Even that adaptive control theory
has resolved the discrete estimation problem if the system
is not affected by external perturbations like noise in the
output or in the state vector description, there still exists
an open problem to describe the discrete state estimation
for uncertain systems. The nonparametric modelling and the
NN have become into an interesting beginning for the study
of this class of systems. Generally speaking, it is dif�cult
to have an adequate representation of the plant under study,
modelling this dynamic plants results in the presence of

defferential or difference complex equations, and most of
the cases, the access to the state vector is limited (Posnyak
et al., 1998).
Within the DNN framewrok, the Recurrent Neural Net-

works (RNN) has became an useful tool in control theory
to deal with the problem of identi�cation and control of
nonlinear systems (Kumpati et al., 1990). In the study of
adaptive Neural Networks (NN) this technique is mostly
used as an approximate model for unknown nonlinearities.
Besides, they have shown their ability to identify, control
and estimate uncertain, nonlinear and complex systems
(Sam y Heng, 2008). The RNN have simple structure with
a close-loop feedback that may be local or global. Due to
this structure these NN have better capabilities to study the
dynamic process of discrete nonlinear biological systems.
Comparing to nonlinear continuous-time systems, adap-

tive control is less developed for nonlinear discrete-time
systems. The same concepts in continuous time and dis-
crete time may have different meaning (Khalil, 2002). For
this reason, most of the control schemes for continuous-
time systems may not be directly suitable for discrete-
time systems. For instance Lyapunov design for nonlinear
discrete-time systems becomes much more intractable. For
instance, consider the linearity property of the Lyapunov
function derivative in continuos-time which, in counterpart,
it is not present in Lyapunov difference equation in discrete
time. However, there are still considerable advances in NN
control for discrete-time systems (Bergman et al., 1981),
(Pérez Medina, 2002).
Mathematical modells clarify some facts about the dy-

namic behavior of a wide class of physical systems.
In particular, talking about biological systems, �nding a
model, is really a hard task, due to the chemical, physical
and cells interactions inside the human body. However,
in many real situations, the modelling rules not always
may generate an acceptable reproduction of reality. In
this cases, the nonparametric identi�cation (based on NN
for example) could be successfully applied to cover the
de�ciencies or not accuracies of classical methodologies. As
result, many methods using NN have been developed and
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successfully applied in Biomedical Engineering (Hudson y
Cohen, 2000), like blood glucose regulation (Bergman et
al., 1981), (Logtenberg y Van Bellegooie, 2006), Hepati-
tis C Estimation (Miranda et al., 2006), cancer schedule
chemotherapy (Hao et al., 2005), (Aguilar et al., 2006)
etc. Besides, one of the advantages to develop a discrete
algorithm is that direct implementation in an electronic
device like a DSP, FPGA, etc is feasible, as one can see
it in (Deponte et al., 2000).
Appli cation developed in this paper deals with the state

estimation for an uncertain HIV model. Usually this illness
monitoring implies the analysis of a sample in a period
of time, this is naturally linked with discrete-time systems.
Other important fact in the application of a discrete-time
algorithm is avoiding the use of an online sensor, because
for certain illness does not exist this kind of instrument.
The rest of this paper is organized as follows: Section II
describes the class of nonlinear systems that are studied in
this paper and derives the stable learning rules, applying
the direct Lyapunov's method. Section III, introduces the
mathematical model of the infection of HIV and the results
of the RNN application, Section IV concludes the paper and
�nally section V derives the proof for the main theorem of
the work.

II. RECURRENT DNN OBSERVER FOR UNCERTAIN
NONLINEAR SYSTEMS

II-A. Class of nonlinear systems

The class of uncertain discrete time nonlinear SISO
systems considered throughout this paper is governed by a
set of n nonlinear equations in differences and an algebraic
state output mapping given by

xk+1 = f (xk; uk) + �1;k xo = x
0

yk = Cxk + �2;k
f (�; �) : <n+p+1 ! <n

(1)

where xk 2 <n is the state vector of the nonlinear uncertain
system at sampled time k, uk 2 <m is the control action,
C 2 <1�n is an a priory known output matrix, yk 2 <p
is the output vector. Nonlinear uncertain function f (�; �) :
<n+m ! <n ful�lls the following assumptions:
A1. The function f (:) is enough smooth and satisfy the

Lipschitz condition with respect to both arguments, that is:

a) kf (xk; uk)� f (yk; vk)k � L1 kxk � ykk+ L2 kuk � vkk
x; y 2 <n; ut; vt 2 <m

(2)
which automatically implies the following property

b) kf (xk; uk; t)k2 � C1 + C2 kxkk2 (3)

This property guarantees the uniqueness and existence of
an unique solution for the original system.
A2. There exists a bounded control function uk, such

that, the system (1) is quadratically stable in closed loop,
in other words, exist a Lyapunov function Vk such that

the difference between the step in the time k + 1 and k is
bounded by:

Vk+1 � Vk � �� kxkk2 (4)

A3. State and output uncertainties and perturbations �1;k
and �2;k in (1) are bounded as follows�j;k2��j � �j ; ��j 2 <

n�n (5)

where ��j = �
|
�j
; ��j � 0 and �j � 0.

II-B. RNN approximation

The uncertain nonlinear system (1) may be allways
represented as

xk+1 = f (xk; uk; k) + �1;k =

A�xk +W
�
1 � (xk) +W

�
2 ' (xk)uk +

~fk + �1;k
A� 2 <n�n; xt 2 <n; ut 2 <m

� (�) : <s2 ! <s1 ; ' (�) : <t2�q ! <t1 ;

(6)

where ~fk is the error modeling which evidently is de�ned
by

~fk := f (xk; uk; k)�
�
A�xk +W

�
1 � (xk) +W

�
2 ' (xk)uk +

~fk

�
RNN based observer can be applied just if the following
conditions is ful�lled:
Assumption. The modelling error ~fk belong to a special

sector region, de�ned by the following inequality ~fk2
� ~f

� n1 + n2 kxkk2� ~f
; n1; n2 2 <+ (7)

Here � ~f 2 <n�n, 0 < � ~f = �
>
~f
.

RNN approximation is based and validated using the
Stone-Weistrass theorem (Prolla, 1994) where the sigmoid
functions are used as space basis and the Lipschitz property
for the nonlinear uncertain system (in fact, quasi-linearity)
is assumed. The matrix A is Hurwitz and the pair (A;C)
is observable.
The vector-functions � (�) := [�1 (�) ; : : : ; �l (�)] and

' (�) := ['1 (�) ; : : : ; 's (�)] are usually constructed with
sigmoid functions components (following the standard
neural networks design algorithms):

�i (x) =
ai

1 + bi exp (�cix)
'ij (x) =

aij
1 + bij exp (�cijx)

(8)

It is quiet usual that nonlinear functions �i (�) and 'ij (�)
satisfy sector conditions with L� and L' positive �nite
constants

k� (x1)� � (x2)k2 � L� kx1 � x2k2

k' (x1)� ' (x2)k2 � L' kx1 � x2k2
(9)
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II-C. Discrete-Time RNN Observer
The introduced discrete-time RNN is classi�ed as a

Hop�eld observer (Posnyak et al., 1998) which can be use
to reproduce the unknown xk+1 vector. The RNN based
observer follows the standar Luenberger technique is

x̂k+1 = Ax̂k + (W1;k+1 �W1;k)� (x̂k)
+ (W2;k+1 �W2;k)' (x̂k)uk +K1 [yk � Cx̂k]

(10)

where x̂k 2 <n is the state observer, uk 2 <m is the input
control signal,W1;k 2 <n�k is the weigh matrix for the
feedback state, W2;k 2 <n�r is the weigh matrix for the
input and A 2 <n�n is a Hurwitz Matrix.
The weight matrices are updated by nonlinear learning

laws

Wj;k+1 = �j (Wj;k; x̂k; yk; uk; k j �) j = 1; 2: (11)

that will be desgined using the thoery of adaptive parameter
identi�cation based on Lyapunov method. Here the para-
meters � must be adjusted to minimize the approximation
error between the nominal part and the uncertain nonlinear
model. The correction matrix K1 should be selected as
usual, that is, in such a way the matrix A�K1C is stable.

II-D. Problem statement
The principal problem to deal with in this paper is

the study of plant's dynamics like the uncertain nonlinear
system (1) under the presence of external perturbation in
the states and in the output. Therefore, this problem can be
formulated as follows:
Under the assumptions A1-A3 for any admissible uk

control injection, select adequate matrices and updating
laws (11) (including the selection of W 0

j;k, j = 1; 2) in
such way the upper bound for the estimation error:

� := l��m
T!1

1

T

TP
k=1

�
k�kk2Q0

+ k�k+1k2Q1

�
� �

� := 2L��1 + 2n1

is bounded.

II-E. Adaptive weights discrete learning law
To adjust the weights of the discrete time neural observer

(10), lets apply the following adapting algorithms:
~W1;k+1 = ~W1;k � k�11 [e|kCN�A

|P ]
|
�| (x̂k)�

k�11

h
��| (x̂k)

�
~W1;k+1+ ~W1;k

�|
Z1

i|
�| (x̂k)

~W2;k+1 = ~W2;k � k�12 [e|kCN�A
|P ]

|
[� (x̂k)uk]

|�
k�12

h
�u|k�

| (x̂k)
�
~W |
2;k+1+ ~W

|
2;k

�
Z2

i|
[� (x̂k)uk]

|

Z1 := PAN��12N�A
|P

Z2 := PAN��11N�A
|P

(12)
The matrix N� 2 <n�n is de�ned as N� :=�
CC> + �In�n

�
with � a small positive scalar value. The

matrices ~W1;k 2 <n�l and ~W2;k 2 <2n�s represent the
difference between the current values of the adjustable
parameters W1;k and W2;k to some �tted values W 0

1;k and

W 0
2;k. �k is the output error de�ned by �k := yk � ŷk

and �k+1 := yk+1 � ŷk+1 for instance, k + 1. Parameters
k1 and k2 are the learning scalar constants of the neural
network. P = P | > 0 is the positive de�nite solution for
the following equations:

~A|P ~A� P +A|PR1PA+ �Q1 = 0
PA+A|P + PR2P + �Q2 = 0

(13)

satisfying the next condition:�
�|k +�

|
k�1A

|�P ~W1;k� (x̂k�1)+�
�|k +�

|
k�1A

|�P ~W2;k� (x̂k�1)uk�1 � 0
(14)

where:
~A1 := A�K1C

R1 := �W �
1�

�1
1

h
�W �
1

i|
+ �W �

2�
�1
2

h
�W �
2

i|
+ ��13 + ��14

�Q1 := L� (�1 + �5 +Q0)
+v0L' (�2 + �6) + �

�1
9 + 2n2Inxn

R2 := �W �
1�

�1
5

h
�W �
1

i|
+ �W �

2�
�1
6

h
�W �
1

i|
+��17 + ��18 +K1C�9C

|K|
1

�Q2 := Q1 + �
13P
j=10

��1j

ARA| 6= 0

II-F. Main Result
Teorema 1: Considering the structure of the observer

given by (10), supplied by the learning law (12) , and
assuming the existence of a positive de�nite matrix Q01
such that the algebraic Ricatti equations given by 13 have
an unique positive solution, then the estimation state error
(�k) is bounded (or equivalently has practical stability) by
the following inequality:

l��m
T!1

1

T

TP
k=1

�
k�kk2Q0

+ k�k+1k2Q1

�
� �

� := 2L��1 + 2n1

(15)

Demostración: The proof of this theorem is developed
in the Apendix.

II-G. Training Algorithm
The implementation of the learning algorithms implies

a-priory knowledge of nominal matrices W 0
s , s = 1; 2

incorporated in ~Ws;k, s = 1; 2. The, so-called, training
process consists in the obtaining of suitable approximation
of these values. This process can be realized before the
on-line state estimation beggins. This process is conducted
choosing the parameters � :=

�
A;W 0

1 ;W
0
2

�
using available

experimental data. In this paper the matrix A was chosen
taking values inside de unitary circle and in the open
left side of the complex plane to guarantee observability
for the pair (A;C). The adequate matrices W 0

1 and W 0
2

were obtained by an identi�cation scheme using Neural
Networks.
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III. SIMULATION RESULTS

III-A. HIV infection Math Model
The basic modeling of the HIV/AIDS dynamics is de-

scribed by a 3-D discrete-time model developed in (Adama
et al., 2008). This model, given by

Tk+1 = s+ (1� �)Tk � �TkVk + p (Tk; Vk)
T �k+1 = �TkVk + (1� �)T �k
Vk+1 = kT

�
k + (1� c)Vk

(16)

includes the dynamics of the no infected CD4+ T-cells, the
infected CD4+ T-cells, and the virions. Term

p (T; V ) = rT

�
V

KV

�
is the CD4+ T-cells proliferation term. In the 3-D model, T
(CD4=mm3) represents the amount of no infected CD4+
T-cells, T � (CD4=mm3) represents the amount of the
infected CD4+ T-cells, and V (RNA copies=ml) represents
the free virions. Free virus particles infect healthy cells at
a rate proportional to both T and V (�TV ). They are
removed from the system at the rate c. In (16), it is assume
that healthy CD4+ T-cells are produced at a constant rate
s. This is the simplest way to model the production of
CD4+ T-cells.� represents the rate at which infected cells
are removed from the system. r is the maximal proliferation
rate of the process. K is the half saturation constant of the
proliferation process (Perelson y Nelson, 1999), (Perelson
et al., 1997).

III-B. Simulation Paramaters
The parameters used in the simulation were taking from

(Adama et al., 2008):

s = 10 � = 0;01 �� = 1e�7

� = 0;09 k = 1000 c = 0;31

�k = ;20 c2 = ;05

an the initial conditions used, were chosen as:

T0 = 1000 CD4/mm3; T �0 = 50 CD4/mm3
V0 = 100 copies/ml, V �0 = 100 copies/ml

The parameter in the RNN to realize the training process
are:

A = �

24 0 0 0
0 0;22 0
0 0 0;255

35 K1 =

24 1;25
0;06
414

35
as we can see the matrix A is Hurwitz with his eigenvalues
in the left side of the complex plane, and the values are
small enough to stay inside the unitary circle. The state
estimate for the second state of the system involving the
infected TCD4+ cells is depicted in Fig. 1 while the free
virions in the human body due the infection of HIV is
observed in Fig. 2.The index performance of the Recurrent
Neural Network can be seen in Fig. 3.

Figura 1. State estimator for the infected TCD4+ cells.

Figura 2. State estimator for the free virions.

IV. CONCLUSIONS

This paper has resolved the state estimation for the
particular case of nonlinear systems with uncertainties on its
states and its output. The practical stability for the observing
error has been demonstrated applying the second Lyapunov
analysis. Based in this result, it can be possible to generate
the corresponding learning laws for the adaptive weights
of the RNN. The application of the observer to the HIV
infection shows the simulation ef�ciency for the discrete
time RNN learning procedure. It is important to note, that
the implementation of this algorithm in a programmable
electronic device is direct, and the close-loop control does
not need a continuous sensor, due to the sampling rate in
the biological systems.
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Figura 3. Performance index.
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Appendix
To construct the converge algorithm, de�ne the energetic

function (Lyapunov-like) as:

Vk = �
T
k P�k + k1tr

n
~WT
1;k
~W1;k

o
+ k2tr

n
~WT
2;k
~W2;k

o
(17)

Using the basic principles of Lyapunov method for discrete
systems, one has:

Vk+1 � Vk = �|k+1P�k+1 ��
|
kP�k+

k1tr
n�

~W1;k+1 + ~W1;k

�| �
~W1;k+1 � ~W1;k

�o
+

k2tr
n�

~W2;k+1 + ~W2;k

�| �
~W2;k+1 � ~W2;k

�o (18)

Using the following equation ��k � ��k + C|C�k =
C|ek; the following identity holds

(�I + C|C)�k = C|ek + ��k
�k = (�I + C

|C)�1 (C|ek + ��k) = N� (C|ek + ��k)
(19)

Working with the term �|k+1P�k+1 the estimation error
has the following structure

�k+1 = A�k + �W �
1 ~�k +

~W1;k+1� (x̂k)+
�W �
2 ~'kuk +

~W2;k+1� (x̂k)uk �K1ek + ~fk + �1;k
(20)

where ~Wi;k := �W �
i;k� �Wi;k and ~�k = � (xk)�� (x̂k) ~'k =

' (xk)� ' (x̂k). Substituting the �k expression

�|k+1P�k+1 � �
|
k (A�K1C)

|
P (A�K1C)�k+

�|kA
|P �W �

1�
�1
1

h
�W �
1

i|
PA�k

+�|kA
|P �W �

2�
�1
2

h
�W �
2

i|
PA�k

+�|kA
|P��13 PA�k +�

|
kA

|P��14 PA�k
+v0L'�

|
k (�2 + �6)�k +�

|
k�

�1
9 �k + 2L��1+

+ ~f|k�3
~fk + ~f|k�7

~fk +�
|
k+1 (PA+A

|P )�k+1

�|k+1P
�W �
1�

�1
5

h
�W �
1

i|
P�k+1

+�|k+1P
�W �
2�

�1
6

h
�W �
1

i|
P�k+1 + L��

|
k (�1 + �5)�k+

�|k+1P�
�1
7 P�k+1 +�

|
k+1P�

�1
8 P�k+1

+�|k+1PK1C�9C
|K|

1P�k+1+

�|kA
|P ~W1;k� (x̂k) + �

|
kA

|P ~W2;k� (x̂k)uk
+�|k+1P

~W1;k+1� (x̂k) + �
|
k+1P

~W2;k+1� (x̂k)uk+



                 Congreso Anual 2009 de la Asociación de México de Control Automático. Zacatecas, México.

Using the upper bound value for ~f|k�3 ~fk and ~f
|
k�7

~fk and
the equation given in (19), one has

Vk+1 � Vk � �|k [(A�K1C)
|
P (A�K1C)� P ]�k+

�|kA
|P �W �

1�
�1
1

h
�W �
1

i|
PA�k

+�|kA
|P �W �

2�
�1
2

h
�W �
2

i|
PA�k

+�|kA
|P��13 PA�k +�

|
kA

|P��14 PA�k+
L��

|
k (�1 + �5)�k + v0L'�

|
k (�2 + �6)�k

+�|k�
�1
9 �k + 2L��1+

2n1 + 2n2 k�kk2 +�|k+1 (PA+A|P )�k+1+
�|k+1P

�W �
1�

�1
5

h
�W �
1

i|
P�k+1

+�|k+1P
�W �
2�

�1
6

h
�W �
1

i|
P�k+1+

�|k+1P�
�1
7 P�k+1 +�

|
k+1P�

�1
8 P�k+1

+�|k+1PK1C�9C
|K|

1P�k+1+

��|k�
�1
10 �k + ��

|
k+1�

�1
12 �k+1

+��|k�
�1
11 �k + ��

|
k+1�

�1
12 �k+1+

e|kCN�A
|P ~W1;k� (x̂k)

+e|k+1CN�A
|P ~W1;k+1� (x̂k)+

��| (x̂k)
�
~W |
1;k+1 +
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So for the updating stage ek�1 = ek; it is obtained

e|kCN�A
|P ~W1;k� (x̂k)

+e|k+1CN�A
|P ~W1;k+1� (x̂k)

= e|kCN�A
|P
�
~W1;k+1 + ~W1;k

�
� (x̂k)

e|kCN�A
|P ~W2;k� (x̂k)uk

+e|k+1CN�A
|P ~W2;k+1� (x̂k)uk

= e|kCN�A
|P
�
~W2;k+1 + ~W2;k

�
� (x̂k)uk

Now, working in the adaptive stage ~W1;k+1 = ~W1;k;
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Considering the condition given in (14), in view of the
assumption on the positiveness of the solution for the
Riccati equation and using the adaptive laws for the
weights, one �nally leads to Vk � Vk�1 � � � k�kk2Q0
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. Summing both sides in the last inequality
and taking the upper limit when T ! 1, one gets
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