
                 Congreso Anual 2009 de la Asociación de México de Control Automático. Zacatecas, México.

High Order Sliding Mode Observer for

Linear Systems with Unbounded Unknown

Inputs

Francisco J. Bejarano

Universidad Nacional Autónoma de México, Facultad de Ingenieŕıa,
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Abstract: A global observer is designed for strongly detectable systems with unbounded
unknown inputs. The design of the observer is based on three steps. First, the system is extended
taking the unknown inputs (and possibly some of their derivatives) as a new state; then, using
a global high-order sliding mode differentiator, a new output of the system is generated in
order to fulfill the Hautus condition which finally allows decomposing the system, in the new
coordinates, into two subsystems, the first one being unaffected directly by the unknown inputs,
and the state vector of the second subsystem is obtained directly from the original system output.
Such decomposition permits of designing a Luenberger observer for the first subsystem. This
procedure enables one to estimate the state and the unknown inputs using the least number of
differentiations possible. Simulations are given in order to show the effectiveness of the proposed
observer.

1. INTRODUCTION

The observation problem for linear systems with unknown
inputs has been extensively studied (Zasadzinski et al.
(1994), Hui and Zak (2005)). Important works of Molinari
and Hautus contributed in establishing the properties that
the system should satisfy in order guaranty the existence
of an observer, thereby allowing the estimation of the
state vector (see, Molinari (1976), Hautus (1983)). In
those works, the strong observability property was stud-
ied. This property ensures a one-to-one correspondence
between the state and the output (this is analogous to
the observability property of linear systems without inputs
(wo.i.)). Furthermore, the strong detectability property
was studied (analogous to detectability for systems wo.i.).
These properties have been studied in terms of the weakly
unobservable subspace Trentelman et al. (2001), using the
theory of invariant subspaces Wonham (1985), Basile and
Marro (1992). Molinari gave a recursive algorithm dealing
with the construction of a series of matrices that allows
for the calculation of the weakly observable subspace in
the last step of the algorithm. Such algorithm can be
interpreted as a differentiation procedure of the output of
the system. Thus, if the system is strongly observable (the
weakly observable subspace contains only the zero vector),
the state can be obtained through a recursive method of
differentiation of the output. On the other hand, Hautus
studied the same problem in terms of invariant zeros and
gave the conditions under which the estimation of the state
vector can be done by means of a linear observer whose
input is the output of the original system; those conditions
are: the system must be strongly detectable (the invariant
zeros of the system must be Hurwitz) and some rank
condition, relating the output distribution matrix and the
input distribution matrices, must be satisfied. This last
condition, which we will refer to as the Hautus condition,
might be quite restrictive. In the sliding mode community,

several observers have been proposed for systems with un-
known inputs. There are works where observers have been
designed assuming the Hautus condition is satisfied (Ed-
wards et al. (2002), Hui and Zak (2005)). In other works, a
differentiation process has been proposed, mainly based on
first and second order sliding mode techniques (Bejarano
et al. (2007), Fridman et al. (2007), Floquet and Barbot
(2007)). A method for the construction of a new output in
order to fulfill the Hautus condition is suggested in Floquet
et al. (2007). Nevertheless, a condition related to the rela-
tive degree of the original system must be satisfied in order
to follow such method, which means the system is required
to meet more than just strong detectability. Furthermore,
the differentiation procedure is done step-by-step using
the super-twisting algorithm (a second order sliding mode,
Levant (1998)), which increases the error due to the sample
time of sensors or computer calculations. The majority
of sliding mode observers allow one to estimate the un-
known input vector, for which the unknown input vector
is assumed to be uniformly bounded. Here, we propose an
observer for strongly detectable systems using the least
number of derivatives possible, which are estimated online
using an exact differentiator for unbounded high order
derivatives Levant (2006). The following notation is used
throughout the paper. Let X be a real matrix of dimension
n×m. The notation X⊥ means a full row rank orthogonal
matrix to X , i.e. X⊥X = 0 and rankX⊥ = n − rankX .
The matrix X⊥⊥ must satisfy the conditions rankX⊥⊥ =

rankX and det

[

X⊥

X⊥⊥

]

6= 0. Meanwhile, X⊥ is a matrix

whose image spans the null space of X , i.e. XX⊥ = 0 and
rankX⊥ = m − rankX . Let f (t) be a vector function,
f [k] represents the k-th anti-differentiator of f (t), i.e.

f [k] (t) =

∫ t

0

∫ τ1

0

· · ·

∫ τk−1

0

f (τk) dτk · · · dτ2dτ1, f [0] (t) =
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f (t); thus F [k+1] :=

[

F [k]

f [k+1]

]

, where F [1] =

[

f (t)

f [1]

]

. For

a matrix A, ρA = rankA.

2. PROBLEM STATEMENT

Let Σ be a linear system whose dynamics is governed by
the following equations:

Σ :

{

ẋ (t) = Ax (t) + Dw (t)
y (t) = Cx (t) + Fw (t)

(1)

The state vector is represented by x (t) ∈ R
n, w (t) ∈ R

m

represents the unknown input vector, and y (t) ∈ R
p is the

output of the system. The fourfold of constant matrices
(A, C, D, F ) will be associated to system Σ. Without loss

of generality, it is assumed that rank

[

D
F

]

= m.

The task is to estimate x (t) and w (t) using only the
output values y (τ ) (τ ∈ [0, t]). Henceforth, the following
conditions are assumed to be satisfied.

A1. System Σ is strongly detectable 1 (the set of invariant
zeros of (A, C, D, F ) lies within the interior of the left
half side of the complex plane).

A2. Vector w can be partitioned in the following way:
wT =:

[

wT
0 wT

1 · · · wT
r

]

, where w0 ∈ R
m0 , and none

of its derivatives are bounded, but it has an upper-
bounded norm, i.e. ‖w0 (t)‖ ≤ w+

0 (t); w1 ∈ R
m1 has

a derivative bounded as ‖ẇ1 (t)‖ ≤ w+
1 (t), and so forth,

until wr ∈ R
mr which does not have a bounded norm for

its first r− 1 derivatives, but it has a bounded norm for

its r-th derivative, i.e.
∥

∥

∥w
(r)
r (t)

∥

∥

∥ ≤ w+
r (t). Obviously, it

must be satisfied that
∑r

i=0 mi = m.

Notice that assumption A2 is related more with the exis-
tence of the bounds of wi that with the partition itself
since, once the bounds are ensured, w can always be
partitioned in the required form, perhaps with a change of
coordinates. We can partition matrices D and F defining
matrices di and fi (i = 0, . . . , r) by means of the identities
Dw =

∑r
i=0 diwi and Fw =

∑r
i=0 fiwi, respectively.

Thus, considering assumption A2, system Σ can be rewrit-
ten into form (2).

Σ̄ex :

{

ẋex = Āxex + D̄wex

y = C̄xex + F̄wex
(2)

We set, by definition

xT
ex =

[

xT wT
1 · · · wT

r ẇT
2 · · · ẇT

r · · · w(r−1)T
r

]

and wT
ex =

[

wT
0 ẇT

1 w
(2)T
2 · · · w(r)T

r

]

, where xT
ex ∈

R
n̄ (n̄ = n +

∑r
i=1 imi) and wex ∈ R

m.

1 Recall that Σ is strongly detectable if y ≡ 0 implies x (t) → ∞.
Some times it is said that the fourfould (A, C, D, F ) is strongly
detectable meaning that this property is fulfilled for the system Σ
associated to this system of matrices.

Ā = diag
(

Ā1, Ā2, . . . , Ār

)

, Ā1 =

[

A d1 · · · dr

0 0 · · · 0

]

Āj :=

[

I
0

]

, Āj ∈ R

(∑

r

i=j−1
mi

)

×

(∑

r

i=j
mi

)

D̄ := diag
(

d̄1, d̄2, . . . , d̄r

)

, d̄1 =

[

d0 0
0 Im1

]

d̄j :=

[

0
Imj

]

, C̄ := [ C f1 f2 · · · fr 0 ]

d̄j ∈ R

(∑

r

i=j−1
mi

)

×mj , F̄ = [ f0 0 ] , F̄ ∈ R
p×m

It is easy to verify that the detectability property is
maintained for system Σ̄ex, i.e. Σ is strongly detectable
if, and only if, Σ̄ex is strongly detectable as well. Thus,
the problem of estimating x (t) and w (t) is restated as the
problem of estimating extended vector xex.

3. CONSTRUCTION OF A NEW OUTPUT

The identity rank

[

CD F
F 0

]

= rankF +m will be referred

to as the Hautus condition. The Hautus condition is a
necessary condition for the design of an observer for sys-
tem (1), without the need of any output derivatives. Let
us define QF̄ ∈ R

m×m as a nonsingular matrix QF̄ :=
[

F̄⊥ Q1

]

, which yields the following matrix decomposi-
tion:

[

D̄
F̄

]

QF̄ =

[

D̄1 D̄2

0 F̄2

]

,
F̄2 ∈ R

p×ρF̄

D̄1 = D̄F̄⊥ ∈ R
n×(m−ρF̄ ) (3)

From (3), rank F̄2 = rank F̄ . From (3), it is easy to verify
that the Hautus condition is equivalent to satisfying the
identity rank F̄⊥C̄D̄1 = rank D̄1. Thus, this section is de-
voted to the construction of a new output ynH

= MnH
xex

so that rankMnH
D̄1 = rank D̄1. Therefore, the procedure

followed in this section must be taken into account only
if rank F̄⊥C̄D̄1 6= rank D̄1, otherwise this section should
be skipped since, in such a case, the procedure given here
is needless. Let us give the following lemma, which will
help to remove the influence of the unknown inputs in
the output injection from the Luenberger-like observer
proposed below.

Lemma 1. (A, C, D, F ) is strongly detectable if, and only
if,

(

Ā − D̄2F̄
+
2 C̄, F̄⊥C̄, D̄F̄⊥

)

is strongly detectable as
well.

Proof. Inasmuch as fourfold (A, C, D, F ) is strongly de-
tectable if, and only if, fourfold

(

Ā, D̄, C̄, F̄
)

is strongly de-
tectable as well, it is enough to prove the equivalence of the
proposition for

(

Ā, C̄, D̄, F̄
)

and
(

Ā − D̄2F̄
+
2 C̄, F̄⊥C̄, D̄F̄⊥

)

.
Let us define RΣ̄ (s) as the Rosenbrock matrix associated
to Σ̄, i.e.

RΣ̄ (s) =

[

sI − Ā −D̄
C̄ F̄

]

.

Due to the fact that the identity




sI − Ā + D̄2F̄
+
2 C̄ −D̄1 −D̄2

F̄⊥C̄ 0 0
0 0 −I



 =





I 0
0 F̄⊥

0 F̄+
2



RΣ̄ (s)

[

I 0
0 QF̄

]





I 0
0

−F̄+
2 C̄

I





(4)

always holds, it turns out to be that s0 is an invariant zero
of

(

Ā, C̄, D̄, F̄
)

, i.e. rankRΣ̄ (s0) < n + m, if, and only if,
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rankRΣ̄
F⊥

(s0) < n+m−r (where the Rosenbrock matrix

RΣ̄
F⊥

for Σ̄F⊥ appears in the extended matrix of the left

hand side of (4)), which in turn is equivalent to asserting
that s0 is an invariant zero of

(

Ā − D̄2F̄
+
2 C̄, F̄⊥C̄, D̄1

)

.

Now, selecting L̄ so that
(

Ā − D̄2F̄
+
2 C̄ − L̄F̄⊥

)

be Hur-
wits, we can design the following Luenberger-like- observer
whose trajectories x̃ are governed by the dynamic equa-
tions (5).

�

x̃ =
(

Ā − D̄2F̄
+
2 C̄

)

x̃ + L̄
(

F̄⊥y − F̄⊥C̄x̃
)

+ D̄2F̄
+
2 y (5)

Defining

[

w̄ex,1

w̄ex,2

]

:= Q−1
F̄

wex, w̄ex,2 ∈ R
ρF̄ ×m, and since

F̄+
2 y = F̄+

2 C̄xex + F̄+
2 w̄ex,2, the dynamics of e (t) =

xex (t) − x̃ (t) takes the form:

ė =
(

Ā − D̄2F̄
+
2 C̄ − L̄F̄⊥

)

e + D̄1w̄ex,1

= Ãe + D̄1w̄ex,1
(6)

3.1 Output extension via HOSM differentiator

In the sequel, we will construct a new output yn̄H
=

Mn̄H
xex so that Hautus condition can be achieved, i.e.

that the identity rankMn̄H
D̄1 = rankD1 will be true. For

the construction of such an output, we will use a high-
order sliding mode differentiator Levant (2006). Firstly,
let us write a set of matrices Mk so that Mkxex can be
expressed as a differentiation operator depending on y. Let
the matrices Mk+1 (which can be taken from the Molinari’s
algorithm Molinari (1976)) be defined by means of the
following algorithm:

Mk+1 = N⊥⊥

k+1Nk+1, M1 =
(

F̄⊥C̄
)⊥⊥

F⊥C̄

Nk+1 = Tk

(

MkĀ
C̄

)

, Tk =

(

MkD̄
F̄

)⊥ (7)

Notice that N⊥⊥

k+1 excludes the linearly dependent rows of
Nk+1, so Mk+1 has full row rank. Defining Φ1 := J1y,

where J1 :=
(

F̄⊥C̄
)⊥⊥

F̄⊥, leads to

Φ1 =
(

F̄⊥C̄
)⊥⊥

F̄⊥C̄xex = M1xex (8)

Now with Φ2 := N⊥⊥
2 T1

[

d

dt
M1xex

y

]

, and moving the

differentiation operator outside of the parenthesis, the
following identity is obtained

Φ2 = M2xex =
d

dt
N⊥⊥

2 T1

[

J1 0
0 I

] [

y

y[1]

]

=
d

dt
J2

[

y

y[1]

]

The matrix J2 is defined by the previous identity. Then,
we can generalize the procedure as follows: defining Φk :=

N⊥⊥
n̄ Tn̄−1

[

d

dt
Mn̄−1xex

y

]

(k = 2, . . . , n̄−ρM1
), the identity

Φk+1 = Mk+1xex =
dk

dtk
N⊥⊥

k+1Tk

[

Jk 0
0 I

]

Y [k]

=
dk

dtk
Jk+1Y

[k]

(9)

holds, where Jk+1 = N⊥⊥

k+1Tk

[

Jk 0
0 I

]

.

The equality rankMi = rankMi−1 implies rankMi+1 =
rankMi. From the previous impilication we can de-
duce that rankMn̄−ρM1

+2 = rankMn̄−ρM1
+1, i.e. at

most n̄ − ρM1
differentiations are needed, which means

that, for a strongly observable Σ (see, e.g. Molinari
(1976), Trentelman et al. (2001)), i.e. detM−1

n̄−ρM1
+1 6=

0, the state vector xex can be expressed by the iden-

tity xex =
dk

dtk
M−1

n̄−ρM1
+1Jn̄−ρM1

+1Y
[n̄−ρM1

]. Neverthe-

less, two drawbacks appear in order to reconstruct xex in
such a manner. The first drawback has to do with the
assumption that the system is strongly detectable but not
strongly observable; therefore, a transformation must first
be done in order to decompose the system into the strongly
observable part and the detectable part (see, e.g. Bejarano
et al. (2009)). The second drawback has to do with the
fact that, during the implementation of the differentiator,
some errors appear due to the computation sample time
and noises in the sensors.

It was proven in Bejarano et al. (2009) that a necessary
requirement to

(

Ā, D̄, C̄, F̄
)

be strongly detectable is that

rank

[

Mn̄D̄
F̄

]

= rank

[

D̄
F̄

]

; therefore,

rank

[

Mn̄D̄ F̄
F̄ 0

]

= rank

[

D̄ F̄
F̄ 0

]

= rank F̄ + m

Hence, the Hautus condition might be satisfied taking
Mn̄xex as a new output of the system. Furthermore, it
is easy to check that rankMn̄D̄1 = rank D̄1. Thus, we
can define n̄H (2 ≤ n̄H ≤ n̄ − ρM1

+ 1) as a the least
natural number such that the matrix Mn̄H

, calculated by
(7), satisfies the rank condition rankMn̄H

D̄1 = rank D̄1,
and define the extended output yn̄H = Mn̄H

xex as the
new output of the system. The new output yn̄H will be
calculated using the differentiation procedure described
above.

Remark 1. Notice that, from (9), the construction of
yn̄H

= Mn̄H
xex can be guaranteed by means of a derivative

of order n̄H − 1; however, some terms of the vector yn̄H

might exist that could be estimated with a derivative of
order less than n̄H−1. Let us exemplify this point, suppose
that yn̄H ,j , the j-th term of yn̄H

, is calculated using (9)
and the j-th row of Jn̄H

has the form Jn̄H ,j = [ 0 J∗ ],
i.e. the first term of Jn̄H ,j is zero. Then yn̄H ,j becomes

yn̄H ,j = dn̄H−1

dtn̄H−1 Jn̄H ,jY
[n̄H−1] = dn̄H−2

dtn̄H−2 J∗Y
[n̄H−2], whence

we conclude yn̄H ,j can be calculated using a derivative of
order n̄H − 2 instead of one of order n̄H − 1.

In the sequel, we will give a method for calculating a
derivative of order n̄H − 1; however, it is advised to take
into account Remark 1. From (9), the vector Mn̄H

e can be
expressed as:

Mn̄H
e =

dn̄H−1

dtn̄H−1

[

Jn̄H
Y [n̄H−1] − (Mn̄H

x̃)[n̄H−1]
]

Defining the vector H (t) = Jn̄H
Y [n̄H−1] − Mn̄H

x̃[n̄H−1],

the j-th term of Mn̄H
e = dn̄H−1

dtn̄H−1 H (t) is calculated as
dn̄H−1

dtn̄H−1 Hj (t) (j = 1, . . . , l; where l is the dimension of
yn̄H

). Thus, the j term of Mn̄H
e can be estimated by means

of a sliding mode differentiator of high order which has the
form (for more details see Levant (2003)):
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żj,0 = λ0 |zj,0 − Hj |
n̄H−1

n̄H sign (zj,0 − Hj) + zj,1

żj,1 = λ1 |zj,1 − żj,0|
n̄H−2

n̄H−1 sign (zj,1 − żj,0) + zj,2

...

żj,n̄H−2 = λn̄H−2 |zj,n̄H−2 − żj,n̄H−3|
1/2 ×

sign (zj,n̄H−2 − żj,n̄H−3) + zj,n̄H−1

żj,n̄H−1 = λn̄H−1 sign (zj,n̄H−1 − żj,n̄H−2)

It was shown in Levant (2003) that, with the proper choice
of constants λi (i = 0, · · · , n̄H − 1), there exists a finite

time tj such that the identity zj,n̄H−1 (t) = dn̄H−1

dtn̄H−1 Hj (t)
is achieved for all t ≥ tj . Thus, every term of yn̄H

can be calculated using a sliding mode differentiator of
high order. λi can be calculated in the following form,
λi = λ0iK

1/(n̄H−i) (t), where K (t) is a local Lipschitz

constant for dn̄H−1

dtn̄H−1 Hj (t) = Mn̄H
e and λ0i is calculated

for the case when K (t) = 1 (λ0i can be calculated using
simulations). A value of λ0i (i = 0, · · · , n̄H − 1) for a
fifth order differentiator was given in Levant (2006), with
λ00 = 12, λ01 = 8, λ02 = 5, λ03 = 3, λ04 = 1.5, and
λ05 = 1.1.

Thus, defining the vector zn̄H−1 = [ z1,n̄H−1 · · · zl,n̄H−1 ]
T
,

we achieve the identity zn̄H−1 = Mn̄H
e, and consequently,

the identity

ŷn̄H
:= zn̄H−1 + Mn̄H

x̃ = Mn̄H
xex = yn̄H

(10)

holds for all t ≥ maxi=1,l Tj > T .

A function K (t) required by the differentiator might be
calculated in the following manner.

Lemma 2. Under assumptions A1 and A2, there exist a
time t̃ and known positive constants γ, ϕ, ξ, and δ such
that, for t > t̃,

∥

∥

∥

∥

d

d
Mn̄H

e (t)

∥

∥

∥

∥

≤K (t) = γ + ξw+
M (t)

+ϕ

∫ t

0

e−δ(t−τ)w+
M (τ ) dτ

with w+
M (t) = maxi=0,r

(

w+
i (t)

)

.

Proof. Since Ã is Hurwitz, the exponential matrix

eÃ(t−t0) (t ≥ t0) has a bounded norm, i.e.
∥

∥

∥eÃ(t−t0)
∥

∥

∥ ≤

ϕ̄e−δ(t−t0) for known positive constants ϕ̄, δ. Thus, from
the solution of (6), we have that

‖e (t)‖ ≤
∥

∥

∥eÃ(t−t0)
∥

∥

∥ ‖e (0)‖

+
∥

∥D̄1

∥

∥

∥

∥Q−1
F̄

∥

∥

∫ t

0

∥

∥

∥eÃ(t−τ)
∥

∥

∥ w+
M (t)

≤ ϕ̄e−δ(t−t0) ‖e (0)‖

+ϕ̄
∥

∥D̄1

∥

∥

∥

∥Q−1
F̄

∥

∥

∫ t

0

e−δ(t−t0)w+
M (t)

Thus, after a finite time t̃, the term ϕ̄e−δ(t−t0) ‖e (0)‖ will
be less than any constant γ̄ = γ̄

(

t̃
)

. Hence, we obtain

‖e (t)‖ < γ + ϕ̃

∫ t

0

e−δ(t−τ)w+
M (t) dτ

with ϕ̃ = ϕ̄
∥

∥D̄1

∥

∥

∥

∥Q−1
F̄

∥

∥. Which in turn yields the inequal-
ity

∥

∥

∥

∥

d

d
Mn̄H

e

∥

∥

∥

∥

≤
∥

∥

∥Mn̄H
Ã

∥

∥

∥

(

γ̄ + ϕ̃

∫ t

0

e−δ(t−τ)w+
M (t) dτ

)

+ ‖Mn̄H
‖

∥

∥D̄1

∥

∥

∥

∥Q−1
F̄

∥

∥ w+
M (t)

Thus, the lemma is proven with γ = γ̄
∥

∥

∥Mn̄H
Ã

∥

∥

∥, ϕ =

ϕ̃
∥

∥

∥Mn̄H
Ã

∥

∥

∥, and ξ = ‖Mn̄H
‖
∥

∥D̄1

∥

∥

∥

∥Q−1
F̄

∥

∥.

4. ASYMPTOTIC OBSERVER

With yn̄H
estimated exactly by means of ŷn̄H

. The system
with its new output takes the form

ẋex =
(

Ā − D̄2F̄
+
2 C̄

)

xex + D̄1w̄ex,1 + D̄2F̄
+
2 y

ŷn̄H
= Mn̄H

xex

Since M1 =
(

F̄⊥C̄
)⊥⊥

F̄⊥C̄, it means that Mn̄H
xex = 0

implies F̄⊥C̄xex = 0, and since (Ā− D̄2F̄
+
2 C̄, F̄⊥C̄, D̄F̄⊥)

is strongly detectable (the strong detectability is not lost
by output injection), the triple (Ā− D̄2F̄

+
2 C̄, Mn̄H

, D̄F̄⊥)
is strongly detectable as well. In fact, it can be proven that
the converse is true as well.

Now let us make a change of coordinates to design an
asymptotic observer. Let the state and output transfor-
mations be given by means of the matrices T and U ,
respectively, defined as follows:

T =

[

D̄⊥

1
(

Mn̄H
D̄1

)+
Mn̄H

]

, U =

[

(

Mn̄H
D̄1

)⊥

(

Mn̄H
D̄1

)+

]

(11)

where the inverse matrices are

T−1 =
[[

I − D̄1

(

Mn̄H
D̄1

)+
Mn̄H

]

D̄⊥+
1 D̄1

]

U−1 =
[(

I − Mn̄H
D̄1

(

Mn̄H
D̄1

)+
)

(

Mn̄H
D̄1

)⊥+
Mn̄H

D̄1

]

Thus, the equations governing the dynamics of the system,
in the new coordinates z = Txex, and ȳ = Uyn̄H

=
UMn̄H

xex, take the form:

[

ż1

ż2

]

=

[

A1 A2

A3 A4

] [

z1

z2

]

+

[

0
w̄ex,1

]

+

[

D̄⊥

1
(

Mn̄H
D̄1

)+
Mn̄H

]

D̄2F̄
+
2 y

(12a)

[

ȳ1

ȳ2

]

=

[

C1z1

z2

]

(12b)

where z2 ∈ R
m.

Lemma 3.
(

Ā, D̄, C̄, F̄
)

is strongly detectable if, and only
if, the pair (A1, C1) is detectable.

Proof. Let ΣMnH
be the system associated to the

triple
(

Ā − D̄2F̄
+
2 C̄, MnH

, D̄F̄⊥

)

. It is easy to check the
following identity,







sI − A1 −A2 0
−A3 sI − A4 I
C1 0 0
0 I 0







= diag (I, U) diag (T, I)RΣMnH
(s) diag

(

T−1, I
)

.
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Thus, rankRΣMnH
(s0) < n̄ + m − r if, and only if,

rankHT (s0) < n̄ − m , where HT (s) =

[

sI − A1

C1

]

.

Therefore, since
(

Ā − D̄2F̄
+
2 C̄, Mn̄H

, D̄F̄⊥

)

is strongly de-

tectable if, and only if,
(

Ā, C̄, D̄, F̄
)

is strongly detectable,
we have that rankRΣ̄ (s0) < n̄ + m if, and only if,
rankHT (s0) < n̄ − m, and the lemma is proven.

Thus, the design of the asymptotic observer can be formu-
lated in two steps:

(1) If rank F̄⊥C̄D̄1 = rank D̄1 set n̄H = 1 and ŷn̄H
=

(

F̄⊥C̄
)⊥⊥

F̄⊥C̄x = J1y, and go to step 2; otherwise,
generate the extended output ŷn̄H

= Mn̄H
x by means

of (10).
(2) For the system

ẋex =
(

Ā − D̄2F̄
+
2 C̄

)

xex + D̄1w̄1 + D̄2F̄
+
2 y

ŷn̄H
= Mn̄H

xex,

which corresponds to triple (Ā − D̄2F̄
+
2 C̄, Mn̄H

, D̄1),
construct an asymptotic observer based on the design
described in this subsection, that is,
(a) with the change of coordinates z = Txex and

ȳ = UMn̄H
xex, system (12) is obtained;

(b) since ȳ2 ≡ z2, state z1 can be observed from
output ȳ1 using a usual Luenberger observer:
�

ẑ1 = A1ẑ1 + L1 (ȳ1 − C1ẑ1) + A2ȳ2 + D̄⊥

1 D̄2F̄
+
2 y

(13)
and the observer for the original system is de-
signed as

x̂ex := T−1

[

ẑ1

ȳ2

]

. (14)

Thus, the main result can be summarized through the
following theorem.

Theorem 4. Assuming that (A, C, D, F ) is strongly de-
tectable and L̄ is designed so that (A1 − L1C1) is Hurwitz,
then observer x̂ex, designed using the two-step procedure
given above, converges asymptotically to the state vector
xex.

Proof. It comes directly from lemma (3) and comparing
(12a) with (13).

Remark 2. For the case when K (t) = K, we can compare
the precision of the observer proposed in this paper with
respect to already published observers. In the observer
designed in Bejarano et al. (2007) the precision of the ob-
server with respect to a Lebesgue measurable and bounded
noises appearing in the system output ‖η (t)‖ ≤ ǫ is of

order O
(

ǫ
1

2k

)

where k is the number of times to derive

to reconstruct the extended state vector (x and w), i.e.,
rank (Mk) = n̄. Meanwhile, the precision with respect to

a sampling time τ is of order O
(

τ
1

2k−1

)

. This error is

due to the proper design of the observer which is based in
the consecutive use of a second order differentiator (super-
twisting algorithm).

The observer designed in Fridman et al. (2007) has a

precision of order O





(

ǫ
1

r

)

1

2k−r



 w.r.t. noise and of

order O
(

τ
1

2k−r

)

w.r.t. the sample time τ , where r is the

maximum of the terms of the vector of relative degrees of
the system output with respect to the unknown inputs.

At difference with the previous two observer, the observer
design proposed here only needs to use once an exact
sliding mode differentiator of order (n̄H − 1) which in
general is less than k. Thus according to Levant (2003), the

precision of the observer w.r.t. noise is of order O
(

ǫ
1

n̄H−1

)

and w.r.t. sample time is O (τ ).

5. SIMULATIONS

Consider that the matrices of the system are the following.

A =

























1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1
0 0 −1 1 1 0 0 0 0
−1 1 0 1 0 0 1 0 1
0 1 0 0 1 0 0 0 0
0 1 0 0 0 0 1 1 0
1 0 0 0 0 1 0 0 1
0 0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 1 0

























D11 = D51 = D91 = D82 = 1, otherwise Dij = 0
C11 = C25 = C39 = C48 = 1, otherwise Cij = 0

F41 = 1, otherwise Fij = 0

The components of w (t) are: w1 = −0.2t + sin(2t + 3) +
0.3 cos(2t)+0.1t2−6, w2 = 0.6t sin(0.6t)−0.4 sin

(

0.4t2
)

−

0.5t+4, w3 = 0.1+0.5t−0.5cos(2t)−0.2t2. The extended

state vector is xex =
(

xT wT
)T

. Since rankM12 = 11,
and M1 to M5 have 4, 7, 9, 10, and 11 rows, respectively,
a derivative of fourth order should be estimated online
if a differentiation process would be followed to estimate
the state vector xex (t). However, to satisfy the Hautus
condition, only a second order derivative must be carried
out, and so the observer proposed in (14) can be designed.
The sample time used was 10−4. Figs. 1 to 3 show the
observation error for the vector state xex (t). The unknown
inputs and their respective estimation are shown in fig. 4.
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Fig. 1. Estimation error ei = xex,i − x̂ex,i (i = 1, 2, 3).

6. CONCLUSIONS

In this paper it is proposed a new observer for linear
systems with unknown inputs. Here we assumed the struc-
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Fig. 2. Estimation error ei = xex,i − x̂ex,i (i = 4, 5, 6).
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Fig. 3. Estimation error ei = xex,i − x̂ex,i (i = 7, 8, 9).
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Fig. 4. Unknown inputs and their respective estimation
(dashed).

tural condition of strongly detectability and the assump-
tion that each unknown inputs has a high order derivative
that is bounded by a real valued function. We proposed
to use a differentiation process that is stopped when the
Hautus condition is satisfied. Thus, an asymptotic ob-
server can be designed. Using the proposed method one
should differentiate just the number of times needed for
the estimation of the state and the unknown inputs.
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