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Abstract— The problem of monitoring in a common class of 
partially known bioreactor models is addressed. A reduced 

order observer namely bounded error estimator is proposed. 
The biomass is estimated by means of substrate concentration 

measurements. The estimation methodology is based on a 

suitable change of variable which allows generating artificial 

variables to infer the remaining mass concentrations 

constructing a differential-algebraic structure. The proposed 

methodology is applied to a class of Haldane unstructured 

kinetic model with success. Stability analysis in a Lyapunov 

sense for the estimation error is performed. Some remarks 

about the convergence characteristics of the proposed estimator 

are given and numerical simulations show its satisfactory 

performance. Finally, a high gain observer is presented: the 

convergence is possible only when the model is perfectly known. 
 

Keywords: Observability, nonlinear systems, Lyapunov 

stability, state observers. 

I. INTRODUCTION 

 

Operating a bioreactor is not a simple task, as during a 

bioreacting process, variables such as concentrations are 

generally determined by off-line laboratory analysis, making 

this set of variables of limited use for control purposes and 

on-line monitoring. However, these variables can be on-line 

estimated using soft sensors.  

Over the last few years, the importance of on-line 

monitoring of biotechnological processes has increased.  A 

first step to efficient bioreactor operation is the adequate 

implementation of online measurements of essential 

variables such as substrate and biomass concentrations. 

Advantages of continuous monitoring of key variables 

include gaining knowledge about the state of the process and 

the possibility of detecting and isolating abnormal process 

developments at early stages. This reduces process costs, 

contributes to process safety and helps in trouble-shooting 

and process accommodation. The main problem in 

fermentation monitoring and control is the fact that process 

variables usually cannot be measured on-line. Monitoring 

and controlling these processes can therefore be difficult 

because only indirect measurements are available online, 

while calculated values may be rather uncertain. This can be 

 
 

due to uncertainty with respect to the equations used, 

measurement errors or both. For automatic control this may 

have serious consequences, especially as the actual variables 

of interest often cannot be directly controlled and related 

variables are controlled instead. In fermentation processes, 

on-line and off-line measurements are the main source of 

information about the state of the process. In combination 

with model-based calculations, they are used to produce 

estimations for monitoring purposes as well as for automatic 

and manual process control (Bastin and Dochain, 1990), 

(Masoud, 1997). 

Observation schemes are widely used for reconstructing 

states of dynamical systems (Aguilar-López et. al, 2006). 

Most of the contributions are related to asymptotic observers 

for monitoring, fault detections and control issues whereas 

the real necessities of industrial plants are related to a fast 

response of the monitoring and regulation methodologies. 

Special attention was given to filtering techniques, namely 

extended Kalman filter, adaptive observers, and artificial 

neural networks (ANN), (Dávila and Fridman, 2005), (Hu 

and Wang, 2002), (Levant, 2001), however for these 

techniques the right tuning of the estimators gains is difficult. 

It is shown that software based state estimation is a powerful 

technique that can be successfully used to enhance automatic 

control performance of biological systems as well as in 

system monitoring and on-line optimization.  

In this paper we consider the growth rate partially known. 

Following this idea, the necessity to adapt an observation 

scheme to the available knowledge of the growth rate 

immediately arises. The main contribution in this work is to 

show a state estimator which is a simplified version of the 

methodology given by (Lemesle and Gouzé, 2005) where a 

simple linear change of variable given in a natural manner 

allows to develop a differential-algebraic state estimator. 

Results show an adequate performance of the considered 

methodology. The technique is not the same as (Alvarez-

Ramirez et. al, 1999) since we do not have derivators. The 

proposed estimation methodology is applied to a kind of 

unstructured kinetic model: the Haldane model, which is 

considered for biological process with substrate inhibition. 

The above mentioned kinetic model is applied to a class of 

continuous stirred bioreactors. 
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In what follows, the statement of the problem is presented; 

an observability condition is given in the differential-

algebraic setting. In section III, the bounded error estimator 

is designed. Section IV shows a high gain observer as a 

comparison with the proposed methodology. Finally, we give 

some concluding remarks. 

II. PROBLEM STATEMENT 

 

A.  The model 

 

Consider the following nonlinear system 

 

( )
( )xhy

uxfx

=

= ,&
                                                                  (1) 

 

where nRx∈ , mRu∈ , nm ≤ , pRy∈ . 

 

Let us recall the classical observer definition. An observer 

for system (1) is a dynamical system ( )yuxfx ,,ˆˆˆ =& , whose 

task is state estimation. Usually is required at least that 

0ˆ →− xx  as ∞→t . Although in some cases, 

exponentially convergence is also required (Gauthier et al., 

1992). 

 

Definition 1: an estimator is said to be bounded if the 

estimation error ( xx −ˆ ) belongs to an open ball with radius 

proportional to some value that depends on its estimation 

error. 

 

In all paper, we will consider a class of bioreactor model. 

The simplified Haldane model taken from (Vargas et al., 

2000), is describe by 

 

   ( ) ( ) Xk
Y

X
SSSD

dt

dS
d

XS
in +−−= µ                         (2a) 

( ) XkXSDX
dt

dX
d−+−= µ                                      (2b)                                              

 

where ( ) ( )φδµµ 2
max SSSS ++=  is the specific growth 

rate and maxµ is the maximum growth rate.  

 

 We assume that ( )Sµ  is partially known, which is 

common in biology (Gouzé and Lemesle, 2001). Generally, 

( )Sµ  is between two bounds meaning that we know a 

function ( )Sµ̂  such that ( ) ( ) aSS <− µµ ˆ , where +∈Ra , 

and ( ) 0)0(ˆ0 == µµ . We introduce an important lemma 

about lower bounded properties of ( )Sµ  . 

 

Lema 1 (Hadj-Sadok, 1999): there exists a constant R∈ε , 

such that ( ) ε>0S  implies ( ) ε>tS  for all t . Thus, for any 

smooth function ( )Sµ , ( )( ) ( )εµµ >tS  for all t . 

 

From lemma 1, we could always choose ε  such that  

( )( ) ( ) rtS => εµµ ˆˆ , where +∈Rr . 

 

The state variables S , X  are substrate and biomass 

concentrations, respectively, VqD =  is the dilution rate 

with V  the volume of the bioreactor and q  the constant 

flow passing through the bioreactor, inS  is the input 

substrate concentration, YS/X  is the corresponding yield 

coefficient. Let us notice that the inputs uD =  and inS  are 

fixed. Moreover, we assume that the measured output is, 

 

Sy =                                                                           (3) 

B.  Algebraic Observability Condition (AOC) 

 

Before proposing the bounded error estimator, a definition 

concerning on algebraic observability condition is given, for 

more details see (Diop and Martínez-Guerra, 2001). 

 

Definition 2: consider the system described by (1), where 

( )Tnxxxx K21= . A state ix , { }ni ,,2,1 L= , is said 

to be algebraically observable with respect to { }yu,  if it 

satisfies a differential polynomial in terms of u , y  and 

some of their time derivatives, i. e., 

( ) 0,,,,,, =K&K& yyuuxP i ,  { }ni ,,2,1 L= .                         

 

Replacing Sy =  into equation (2a), the algebraic 

observability condition for Haldane model is calculated as 

follows,                               

( ) 0
1

2

max =













−

++
+−− Xk

Yyy

y
ySuy d

XS
in

φδφ

φµ
&       (4) 

 

From equation (4), it is clear that the state variable X  

satisfies the AOC thus, X  is algebraically observable. 

III. BOUNDED ERROR ESTIMATOR  

 

A.  Estimator design 

 

In what follows, the corresponding estimated 

concentration is denoted by ^, and we assume that S  is 

measured exactly, i.e., SS ˆ= . Then, we only reconstruct the 

biomass variable X . 

 

Consider the Haldane’s model given by system (2), and 

make the change of variable 

 

                     SkXz +=                                               (5)    
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where Rk∈  is fixed. 

 

The dynamics of z  is, 

( ) +



























−+−+−= zS

Y

k
kkkDz

XS
dd µ1&  

  ( ) ( ) in
XS

d SDkSSk
Y

k
Skkk +














−+−+ µ11      (6) 

 

Proposition 1: if we choose the estimator’s gain such that 

dXS kDkY /1/ +≤<  and ( ) ( ) aSS <− µµ ˆ , +∈Ra . Then, 

the system (7) is a bounded error estimator of (6). 

 

( ) +



























−+−+−= zS

Y

k
kkkDz

XS
dd ˆˆ1ˆ µ&  

      ( ) ( ) in
XS

d SDkSSk
Y

k
Skkk +














−+−+ µ̂11     (7) 

 

For the proof, define the estimation error, 

 

  zze ˆ−=                                                                      (8) 

 

 Then, using equations (6) and (7) the estimation error 

dynamic is obtained as 

 

( ) +



























−+−+−= eS

Y

k
kkkDe

XS
dd µ̂1&  

  ( ) ( )[ ] ( ) ( )[ ]zSS
Y

k
SkSS

Y

k

XSXS

µµµµ ˆ1ˆ1 −













−−−














−+  

                                                                                        (9) 

To analyze the stability of equation (9) we consider the 

following Lyapunov function candidate 

 

  
2

2

1
eV =                                                                    (10) 

 

The time derivative of equation (10) is 

 

  eeV && =                                                                       (11) 

 

 Replacing (9) into (11) yields 

 

( ) +



























−+−+−= 2ˆ1 eS

Y

k
kkkDV

XS
dd µ&  

( ) ( )[ ] ( ) ( )[ ] ezSS
Y

k
eSkSS

Y

k

XSXS

µµµµ ˆ1ˆ1 −













−−−














−+

                                                                                          (12) 

 Equation (12) is written alternatively as 

 

( ) −



























−+−+−= 2ˆ1 eS

Y

k
kkkDV

XS
dd µ&  

   ( ) ( )[ ] eXSS
Y

k

XS

µµ ˆ1 −













−−                          (13)                                                                   

 

Now, from lemma 1 and taking into account that 

dXS kDkY /1/ +≤< , ( ) ( ) aSS <− µµ ˆ , and X  is bounded,  

equation (13) leads to, 

 

eaX
Y

k
er

Y

k
kkkDV

XSXS
dd max

2
11













−+




























−+−+−≤&

 ewe +−= 2λ  

 

where, 

 r
Y

k
kkkD

XS
dd 













−+−+= 1λ  and max1 aX

Y

k
w

XS













−=  

 

 The right-hand side of the foregoing inequality is not 

negative since near the origin, the positive linear term ew  

dominates the negative quadratic term 2eλ− . However, V&  

is negative outside the set { }λwe ≤ . Let ε,c  be some 

upper bounds for ( )eV . With 22 2λwc > , solutions starting 

in the set ( ){ }ceV ≤ will remain therein for all time because 

V& is negative on the boundary cV = . Hence, the solutions 

of equation (9) are uniformly bounded (Khalil, 2002). 

Moreover, if ( ) cw << ελ22 2 , then V&  will be negative in 

the set { }cV ≤≤ε , which shows that, in this set V will 

decrease monotonically until the solutions enters the set 

{ }ε≤V . From that time on, the solution cannot leave the set 

{ }ε≤V  since V& is negative on the boundary ε=V . 

According to (Khalil, 2002), the solution is uniformly 

ultimately bounded with the ultimate bound ε2≤e . For 

instance, defining c  and ε  as follows 

 
2

max














=

λ

aX

Y

k
c

XS

,  

2

max 







=

λ
ε

aX
k  

 

the ultimate bound is, 
λ
max2

aX
ke ≤  

 

 Corollary 1: if the growth rate is perfectly known, i. e., 

( ) ( )SS µµ ˆ= , and we choose the estimator’s gain such that 
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dXS kDkY /1/ +≤< . Then, the system (14) is an asymptotic 

estimator of (6). 

 

( ) +



























−+−+−= zS

Y

k
kkkDz

XS
dd ˆ1ˆ µ&  

             ( ) ( ) in
XS

d SDkSSk
Y

k
Skkk +














−+−+ µ11    (14) 

 

Indeed, the dynamics of the error in this case is 

 

( ) eS
Y

k
kkkDe

XS
dd




























−+−+−= µ1&  

 

and the corresponding time derivative of Lyapunov function 

candidate (10) is 

( ) 01
2 <




























−+−+−= eS

Y

k
kkkDV

XS
dd µ&  

  

Moreover, X  can be reconstructed considering 

 

 SkzX −= ˆˆ                                                               (15) 

 

B.  Numerical simulations 

 

For all simulations in this paper we take 

50=inS , 1.0=D , 9.0=XSY , 01.0=dk  and the initial 

conditions ( ) 600 =S , ( ) 400 =X , ( ) 300ˆ =X , ( ) 900ˆ =z , 

with appropriate units. The estimator’s gain is 1=k . The 

growth rates are chosen as 

 

( )
25.81140 2SS

S
S

++
=µ and  ( )

25.81140

8.0
ˆ

2
SS

S
S

++
=µ    

 

when the model is well known for the asymptotic estimator 

and when the model is partially known for the bounded error 

estimator, respectively. The simulations results were carried 

out with the help of Matlab 7.1 Software with Simulink 6.3 

as the toolbox. 

 

The performance index of the corresponding estimation 

process is calculated as (Martínez-Guerra, et. al, 2000) 

 

            ( )∫+
=

t

de
t

J

0

2

001.0

1
ττ                                   (16) 

where ( )te  is the corresponding state estimation error (the 

difference between the actual observed signal and its 

estimate). 

First, in figure 1 we show the simulation results for  the 

bounded error estimator given by proposition 1, and the 

corresponding results for the asymptotic estimator given by 

corollary 1 (without any noise in the system output).  

Furthermore, in figure 2 is shown the effect of noise in the 

estimation process. A white noise is added in the 

measurement ( 1.0=σ , %10±  around the current value of 

the measured output). We can observe that the bounded error 

estimator is robust against noisy measurement. Finally, in 

figure 3 is illustrated the performance index given by (16) 

for the corresponding estimation process. It should be noted 

that the quadratic estimation error (performance index) is 

bounded on average and has a tendency to decrease. 
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Figure 2. State Variables (with noise in the system output).  
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Figure 3.  Quadratic estimation error. (a) Without any noise, 

(b) with white noise; in the system output. 

IV. A NOTE ON FULL-ORDER OBSERVERS: THE HIGH GAIN 

OBSERVER 

A.  Observer design 

 

Consider that system (1) satisfies the AOC. In this case to 

estimate the state-space vector x , we can suggest a nonlinear 

high gain observer (Gauthier et. al, 1992), (Martínez-Guerra 

et. al, 2000) with the following structure, 

 

( ) ( )xCyKuxfx ˆ,ˆˆ −+=&                                             (17) 

        
( )00 ˆˆ,ˆ txxRx n =∈  

 

 where the observer’s gain matrix is given by, 

 

          
TCSK 1−= θ  ,      

nji

ijji
SS

,,1,
1

1

K=
−+









=

θ
θ    

 

and the positive parameter θ  determines the desired 

convergence velocity. Moreover, 0>θS , TSS θθ =  should 

be a solution of the algebraic equation, 

 

CCSIEIES
TT =








++








+ θθ

θθ

22
,     








= −−

00

0 1,1 nnI
E  

 

 As shown by (Gauthier et. al, 1992), (Martínez Guerra and 

de Leon-Morales, 1996), under certain technical a 

assumptions (Lipschitz conditions for nonlinear functions 

under consideration) this nonlinear observer has an arbitrary 

exponential decay for any initial conditions. We obtain the 

following high order observer for the system (2) applying the 

observation scheme (17), 

 

( ) ( )ySXk
Y

X

SS

S
SSDS d

XS
in −−+

++
−−= ˆ2ˆ

ˆ

ˆˆ

ˆ
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/
2

max θ
φδ

µ&
 

( )
( )

( ) ( )ySSSY
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SX

k
S

SYS

XkX
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S
XDX
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dXS

d

−




+++

+






++

−














+++−

−

−−
++

+−=

ˆˆˆ

ˆˆ

ˆ
2

ˆ
ˆˆ

1

ˆˆ
ˆˆ

ˆ
ˆˆ

2
/

2

2

2
max

2

max

2

max

φδθ

φδ

φδµ
θ

φ
δµ

φδ

µ&

B.  Simulations 

 

 In the same way, we show two simulations: when the 

model is well known and when the model is partially known. 

The initial conditions for the observer are ( ) 400ˆ =S , 

( ) 300ˆ =X , with appropriate units. The estimator’s gain is 

2=θ . The simulations results of high gain observer are 

presented in figure 4 and figure 5. In figure 4, without any 

noise in the system output, when the model is perfectly 

known the rate of convergence is fast, on the other hand, 

when the model is partially known the observer does not 

reconstruct the state variables. In figure 5, we studied the 

effect of noise in the measurement (white noise with 

1.0=σ , %5±  around the current value of the measured 

output), we can see that the high gain observer is very 

sensitive to the noise in the system output. Figure 6 shows 

the performance index. It should be noted that this observer 

only reconstruct the state variables when the model is well 

known. 
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Figure 4. State Variables 
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Figure 5. State Variables (with noise in the system output).   
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Figure 6.  Quadratic estimation error. (a) Without any noise, 

(b) with white noise; in the system output. 

 

V. CONCLUSION 

 

In this paper we have presented a bounded error estimator 

for bioprocess with unstructured growth models. We have 

proven the stability of the corresponding estimation error in 

a Lyapunov sense. By means of a linear change of variable 

given in a natural manner and with some algebraic 

manipulations have been constructed the state estimator, 

which converges to the current states of the reference model 

given. We have demonstrated that the bounded error 

estimator under consideration provides good enough state-

space estimates which were bounded on average.  Moreover, 

we have constructed a high gain observer in which the 

convergence is fast only if the model is well known, but does 

not exists convergence if the model is partially known. 

Finally, we have presented some simulations to illustrate the 

effectiveness of the suggested approach, which shows some 

robustness properties against noisy measurements. 
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