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Abstract— In this paper a new observer is proposed for the 

synchronization problem, this new observer is an asymptotic 

polynomial observer for a class of nonlinear oscillators which 

turns out be robust against output noises. Furthermore this 

observer is of high order polynomial type. Stability analysis in a 

Lyapunov sense for the synchronization error is performed. The 

proposed methodology is applied to synchronization of chaotic 

systems with success: the performance of this observer is shown 

by using Rössler system. 
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I. INTRODUCTION 

 

In the last years, synchronization of chaotic systems 

problem has received a great deal of attention among 

scientist in many fields, for instance in (Fradkov, 2007) and 

(Chen et al., 2005). It is well known that study of the 

synchronization problem for nonlinear systems has been very 

important for nonlinear science, in particular the applications 

to biology, medicine, cryptography, secure data transmission 

and so on. In general, the synchronization research has been 

focused onto two areas. The first one relates with the employ 

of state observers, where the main applications lies on the 

synchronization of nonlinear oscillators (Hua and Guan, 

2005) and (Martínez-Guerra et al., 2006). The second one is 

the use of control laws, which allows achieve the 

synchronization with different structure and order between 

nonlinear oscillators (Femat and Solis-Perales, 2008). A 

particular interest is the connection between the observers 

for nonlinear systems and chaos synchronization, which is 

also known as master- slave configuration (Pecora and 

Caroll, 1990). Thus, chaos synchronization problem can be 

regarded as observer design procedure, where the coupling 

signal is viewed as output and the slave system is the 

observer. 

The problem of observer design naturally arises in a 

system approach, as soon as one needs unmeasured internal 

 
 

information from external measurements. In general indeed, 

it is clear that one cannot use as many sensors as signals of 

interest characterizing the system behavior for technological 

constraints, cost reasons, and so on, especially since such 

signals can come in a quite large number, and they can be of 

various types: they typically include parameters, time-

varying signals characterizing the system (state variables), 

and unmeasured external disturbances. 

The design of observers for nonlinear systems is a 

challenging problem (even for accurately known systems) 

that has received a considerable amount of attention. Since 

the observers developed by Kalman and Luenberger several 

years ago for linear systems, different state observation 

techniques have been proposed to handle the systems 

nonlinearities. A first category of techniques consists in 

applying linear algorithms to the system linearized around 

the estimated trajectory. These are known as the extended 

Kalman and Luenberger observers. Alternatively, the 

nonlinear dynamics are split into a linear part and a nonlinear 

one. The observer gains are then chosen large enough so that 

the linear part dominates the nonlinear one. Such observers 

are known as high-gain observers (Aguilar et al., 2003), 

(Martínez-Guerra et al., 2000). In a third approach the 

nonlinear system is transformed into a linear one by an 

appropriate change of coordinates (Keller, 1987). The 

estimate is computed in these new coordinates and the 

original coordinates are recovered through the inverse 

transformation. In most approaches, nonlinear coordinate 

transformations are employed to transform the nonlinear 

system into a block triangular observer canonical form. 

Then, high gain (Gauthier et al, 1992), backstepping (Young 

and Farrel, 2000), or sliding mode observers (Levant, 2001) 

can be designed. 

 Many problems in engineering and other applications are 

globally Lipschitz for instance the sinusoidal terms in 

robotics. Nonlinearities which are square or cubic in nature 

are not globally Lipschitz, however, they are locally so, 

moreover when such functions occur in physical systems, 

they frequently have a saturation in their growth rate, making 

them globally Lipschitz functions (Raghavan, 1994). Thus, 

this class of systems covered by this note is fairly general. 
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The main contribution of this paper consists in the 

solution of the synchronization problem via an asymptotic 

polynomial observer. The obtained state space estimation 

error is shown to be bounded, and this bound depends on 
observer’s gain and a Lipchitz constant. This communication 

presents some fundamental insights into polynomial observer 

design for the class of Lipschitz nonlinear systems, that it 

means, that any autonomous nonlinear system of the form 

( )uxfx ,=&  can be regarded as Lipschitz continuous system 

with respect to x , with a Lipchitz constant L . 

The intention of choosing an example as the Rössler 

system is to clarify the proposed methodology. However, it 

is worth to mention that this technique can be applied to 

almost any chaotic synchronization problem. 

In what follows, an asymptotic polynomial observer is 

proposed as well as an easy numerical design is given. 

Numerical results show its satisfactory performance. Finally 

we close this paper with some concluding remarks. 

 

II. MAIN RESULT 

 

Consider the following nonlinear system: 

 

( )
Cxy

uxfx

=

= ,&
                                                        (1a) 

 

where nx ℜ∈  is the vector of the state variables; 

( ) )(,: nlf nln ≤ℜ→ℜ×ℜo  is a nonlinear smooth 

vector function and Lipschitz  in x and uniformly bounded in 

u, ℜ∈y  is the vector of measured states. 

 

Any nonlinear system of the form (1a) can be expressed in 

the form (1b) as long as ( )uxf ,  is differentiable with respect 

to x . 

 

( )uxxAx ,Ψ+=&                                                   (1b) 

        xCy =   ,   ( )00 txx =  

 

In system (1b),  ( )ux,Ψ  is a nonlinear vector function 

which satisfies the Lipschitz condition with a Lipschitz 

constant L , i.e, 

 

( ) ( ) xxLuxux ˆ,ˆ, −≤Ψ−Ψ                                                                              

 

In this paper, we always assume that the pair ( )CA,  is 

observable. 

 

We have the main result. 

 

 

Proposition 1: the following nonlinear dynamic system is a 

full order state observer of the system (1b): 

 

     ( ) ( ) ( )[ ]mxxCKxxCKuxxAx ˆˆ,ˆˆˆ
21 −+−+Ψ+=

•

        (2) 

   ( )00
ˆˆ txx =                                        

 

If the following assumptions are considered, 

 

• 1,, >∈ + moddmZm                                               (3)  

                   

• 1K  can be chosen such as the following Algebraic 

Riccati Equation (ARE) has a symmetric positive-

definite solution P  for some 0>ε  

 

( ) ( ) 02
11 =+++−+− IIPPLCKAPPCKA

T
ε       (4) 

 

• ( ) 02min ≥CPKλ                                                          (5) 

                             

In (2), ,ˆ nx ℜ∈  [ ] nT
nkkkK ℜ∈= 1,1,21,11 K ,  

      [ ] nT
nkkkK ℜ∈= 2,2,22,12 K . 

 

Proof. Defining the estimation error as xxe ˆ−= , the 

corresponding dynamic of the estimation error is: 

 

( ) [ ] ( ) ( )[ ]uxuxCeKeCKAe
m

,ˆ,21 Ψ−Ψ+−−=&              (6) 

 

Consider the Lyapunov function candidate, 

 

PeeV T=                                                                                                           

 

Its derivative is 

 

ePePeeV TT
&&& +=  

( ) ( )[ ] −−+−= eCKAPPCKAe
TT

11   

   ( ) ( ) ( )[ ]uxuxPeCePKeCe TTm
,ˆ,22 2

1
Ψ−Ψ+−

−
      (7)       

 

In (Raghavan and Hedrick, 1994) is presented the next 

inequality as a lemma which is useful for this proof, 

 

( ) ( )[ ] eeePPeLuxuxPe TTT +≤Ψ−Ψ 2,ˆ,2                                                                

 

From Rayleigh inequality, and taking into account (5), we 

have, 

 

( ) 2

2min2 eCPKCePKe
T λ−≤−                                                                             

 

Equation (7) leads to 
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( ) ( )[ ]
( ) ( ) eeePPeLeCPKCe

eCKAPPCKAeV

TTm

TT

++−

−−+−≤

− 22

2min
1

11

2 λ

&

   

           ( ) ( )[ ] −++−+−= eIPPLCKAPPCKAe
TT 2

11  

         ( ) ( ) 2

2min
1

2 eCPKCe
m

λ
−

−                              (8) 

 

From assumption (3), the second term in the right hand 

side of the inequality (8) always will be positive or zero,  

  

( ) ( )[ ] eIPPLCKAPPCKAeV
TT ++−+−≤ 2

11
&     (9) 

 

According with assumption (4), since 0>ε , it is clear that 

 

( ) ( ) 02
11 <++−+− IPPLCKAPPCKA

T
 

 

Hence, 0<V&  .This implies that system (2) is an observer for 

system (1b) and the corresponding dynamic of the estimation 

error (6) is asymptotically stable. 

 ♦ 

 

III. APPLICATION TO SINCRONIZATION OF 

CHAOTIC SYSTEMS 

 

To illustrate our methodology, we give an application to 

chaotic systems. In fact, this is an application to the so-called 

Rössler’s system (Rössler, 1976) which presents a chaotic 

behavior and exhibits the simplest possible strange attractor, 

arose from work in chemical kinetics. 

 

A.  The model 

 

We consider the popular nonlinear Rössler’s System, 

which is described by 

 

1

133

212

321

)(

)(

xy

cxxbx

axxx

xxx

=

−+=

+=

+−=

&

&

&

                                                   (10) 

 

It is well known that in a large neighborhood of 

{ a =b =0.2, c =5} this system has a chaotic behavior. 

 

Remark 1: it is not difficult to prove that above system is 

Lipschitz. 

 

B.  Observability condition 

 

The system (10) may be written in the form given by (1b), 

where [ ]Txxxx 321= , 

 

















−

−−

=

c

aA

00

01

110

 , 

















+

=Ψ

31

0

0

xxb

  ,   [ ]001=C  

 

It can easily be shown that with the selection of 1xy = , 

the corresponding pair ( )CA,  is observable. By choosing 

the observer’s gain 1K  and 2K  appropriately, the observer 

given by (2) may achieve local synchronization. 

 

C.  The observer for the Rössler’s System 

 

According with proposition 1, we get the following 

equations system (slave system) as the observer, 

     

  

( ) ( ) ( )

( ) ( )

( ) ( ) ( )m

m

m

xxkxxkcxxbx

xxkxxkxaxx

xxkxxkxxx

112,3111,3133

112,2111,2212

112,1111,1321

ˆˆˆˆˆ

ˆˆˆˆˆ

ˆˆˆˆˆ

−+−+−+=

−+−++=

−+−++−=

&

&

&

   

(11) 

 

where, [ ]TkkkK 1,31,21,11 = , [ ]TkkkK 2,32,22,12 =  

and 0,, >cba . 

  

D.  Numerical simulations 

 

The design of the full-order observer presented in this 

paper is based on the solution of the Riccati equation which 

can be obtained by using the Matlab function ARE. 

 

We have chosen the values for the Rössler’s system (10) 

and the observer (11) as 2.0== ba , 5=c , 3=m ,  and the 

observer’s gain have been taken as [ ]TK 5551 −= and   

[ ]TK 1010102 = .  All the simulations results in this 

paper were carried out with the help of Matlab 7.1 Software 

with Simulink 6.3 as the toolbox. 

 

In this work, the performance index of the corresponding 

synchronization process was calculated as,  

 

( ) ( ) τdte
t

tJ

t

Q∫+
=

0

2

0001.0

1
                                      (12)                                 

 

where ( )te  denotes the estimation error and IQ =0 . 

 

Figure 1 shows the convergence of the estimated states 

(slave system) to the real states (master system), without 

noise in the system output. The initial conditions 

are 5.01 −=x , 5.02 =x , 43 =x , 4ˆ
1 −=x , 3ˆ

2 =x , 4ˆ
3 −=x . 
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Figure 1. State estimation, without any noise in the system 

output. 
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Figure 2. Rössler’s system trajectories 

 

Figure 2 shows the chaotic behaviour to the Rössler’s 

System (master system) and its observer (slave system), and 

also shows the convergence of the estimated states to the real 

states, without noise in the system output.  

Now, we analyze the effect of noise in the measurements. 

In figure 3 are presented the numerical results when a noise 

is added in the system output (white noise with 1.0=σ , 

%10±  around the current value of the system output). We 

can see that synchronization is possible, i. e, the estimated 

states tend to the real states.  
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Figure 3. State estimation, with white noise in the system 

output. 
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Figure 4.  Quadratic estimation error. 

 

 

In figure 4 is illustrated the performance index given by (12) 

for the corresponding synchronization process, without any 

noise system output and with noise in the system output 

(white noise with 1.0=σ , %10±  around the current value 

of the measured output). It should be noted that the quadratic 

estimation error (performance index) is bounded on average 

and has a tendency to decrease. Clearly, we can see that the 

proposed observer is robust against noisy measurements. 

 

IV. CONCLUSION 

 

In this paper, we have designed a new asymptotic 

polynomial observer (high order polynomial type) for a class 

of nonlinear oscillators to attack the synchronization 

problem. Also, we have proven the asymptotic stability of 

the resulting state estimation error and by means of simple 

algebraic manipulations we construct the observer (slave 

system). Finally, we have presented some simulations to 

illustrate the effectiveness of the suggested approach, which 

shows some robustness properties against noisy 

measurements. 
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