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Abstract— An adaptive controller for teleoperators with
time-delays, which ensures synchronization of positions and
velocities of the master and slave manipulators, and does not
rely on the use of the ubiquitous scattering transformation
is proposed in (Chopra et al. Automatica. 44(8):2142-2148,
Aug. 2008). In the present paper it is shown that such
controller will tend to drive to zero the positions of the joints
where gravity forces are non–zero. Hence, such scheme is,
in general, applicable only to systems without gravity. It is
also proved that this limitation can be obviated replacing the
positions and velocities—that are used in the coordinating
torques and the adaptation laws—by theirerrors. Simulation
results illustrate the performance of both schemes.
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I. I NTRODUCTION

It is widely known, amongst the teleoperation literature,
that Anderson and Spong have created the basis ofmodern
teleoperators control, providing the first scheme rendering a
stable teleoperation despite any constant time-delay. Their
approach was to render passive the communications using
the analogy of a lossless transmission line with the scatter-
ing theory. Under the reasonable assumption that the human
operator and the contact environment define passive (force
to velocity) maps, stability of the overall system is then en-
sured (Anderson y Spong, 1989; Niemeyer y Slotine, 1991).
Nevertheless, the classic scattering transformation may give
raise to position drift. In order to overcome this obstacle,
PD plus damping injection controllers have been reported in
(Lee y Spong, 2006; Nũno et al., 2008; Nũno et al., 2009).

(Chopra y Spong, 2006) proposed to formulate the tele-
operation problem in terms of synchronization, which also
avoids the scattering transformation. An adaptive version
of this scheme that aims at synchronizing the local and
remote positions and velocities is proposed in (Chopra
et al., 2008). In the present paper it is proved that such
scheme is, in general, only applicable to systems without
gravity. Moreover, an adaptive controller that overcomes
this obstacle is presented. The main, simple but essential,
difference between the proposed controller and the one in
(Chopraet al., 2008) is the use of the position and velocity

errors in the coordinating torques and the robot dynamics
parametrization—and, consequently, in the adaptation laws.

Notation. R := (−∞,∞), R>0 := (0,∞), R≥0 :=
[0,∞). λm{A} and λM{A} represent the minimum and
maximum eigenvalue of matrixA, respectively.|x| stands
for the Euclidean norm of vectorx. For any function
f : R≥0 → R

n, the L∞-norm is defined as‖f‖∞ =

sup
t∈[0,∞)

|f(t)|, and theL2-norm as‖f‖2 =
(∫ ∞

0
|f(t)|2dt

)
1

2 .

The subscripti takes the valuesl andr for local and remote
robot manipulators, respectively.

II. DYNAMIC MODEL OF THETELEOPERATOR

The local and remote manipulators are modeled as a
pair of n-Degrees of Freedom (DOF) serial links. Their
corresponding nonlinear dynamics, together with the human
operator and environment torques, are given by

Ml(ql)q̈l + Cl(ql, q̇l)q̇l + gl(ql) = τh − τ l

Mr(qr)q̈r + Cr(qr, q̇r)q̇r + gr(qr) = τ r − τ e, (1)

where: q̈i, q̇i,qi ∈ R
n are the joint acceleration, velocity

and position;Mi(qi) ∈ R
n×n are the inertia matrices;

Ci(qi, q̇i) ∈ R
n×n capture the Coriolis and centrifugal

effects;gi(qi) ∈ R
n are the gravitational forces;τ i ∈ R

n

are the control signals; andτh ∈ R
n, τ e ∈ R

n are the
forces exerted by the human and the environment. It is
assumed that the manipulators are composed by actuated
revolute joints, and that friction can be neglected.

These dynamical models have some important well–
known properties (Kellyet al., 2005; Sponget al., 2005).

P1. The inertia matrix is lower and upper bounded, i.e.,
0 < λm{Mi}I ≤ Mi(qi) ≤ λM{Mi}I < ∞.

P2. The Coriolis and inertia matrices are related as
Ṁi(qi) = Ci(qi, q̇i) + C⊤

i (qi, q̇i).
P3. The Coriolis forces are bounded as follows

∀ qi,x,y ∈ R
n ∃kci

∈ R>0 such that|Ci(qi,x)y| ≤
kci

|x||y|. Consequently,|Ci(qi, q̇i)q̇i| ≤ kci
|q̇i|

2.
P4. The Lagrangian dynamics are linearly parameteriz-

able, such that

Mi(qi)q̈i+Ci(qi, q̇i)q̇i+gi(qi) = Yi(qi, q̇i, q̈i)θi
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whereYi(qi, q̇i, q̈i) ∈ R
n×p are matrices of known

functions andθi ∈ R
p are constant vectors of the ma-

nipulator physical parameters (link masses, moments
of inertia, etc.).

III. PREVIOUS RESULTS

In this section we briefly review the results reported in
(Chopraet al., 2008) and point out the constraint it imposes
on the gravity.

A. A Synchronization Result

Let ei ∈ R
n denote the position error vectors, defined,

for a constant time-delayT , by

el = qr(t − T ) − ql; er = ql(t − T ) − qr. (2)

The control objective of (Chopraet al., 2008) is to drive
the coordination errors,ei, ėi, to zero, independently of
the constant time-delayT , and without using the scattering
transformation. In this case, it is said that the manipula-
tors synchronize. In order to achieve the synchronization
objective the following adaptive controller is proposed

τ l = M̂l(ql)λq̇l + Ĉl(ql, q̇l)λql − ĝl(ql) − τ̄ l (3)

τ r = τ̄ r − M̂r(qr)λq̇r − Ĉr(qr, q̇r)λqr + ĝr(qr)

whereM̂i, Ĉi, ĝi are the estimates of the inertia and Corio-
lis matrices and the gravity forces, respectively,λ ∈ R>0,1

and τ̄ i are the coordinating torques given by

τ̄ l = K[sr(t − T ) − sl]; τ̄ r = K[sl(t − T ) − sr] (4)

whereK ∈ R>0. The signalssi are defined as

si = q̇i + λqi. (5)

The control signals (3) can be also written as

τ l = Yl(ql, q̇l)θ̂l − τ̄ l; τ r = τ̄ r − Yr(qr, q̇r)θ̂r,

whereYi(qi, q̇i) are matrices of known functions, and̂θi

are the physical estimated parameters.
Replacing (3) in (1) and adding the term

Yi(qi, q̇i)θi = Mi(qi)λq̇i +Ci(qi, q̇i)λqi−gi(qi), (6)

at each side, yields

Ml(ql)ṡl + Cl(ql, q̇l)sl = Yl(ql, q̇l)θ̃l + τ̄ l + τh (7)

Mr(qr)ṡr + Cr(qr, q̇r)sr = Yr(qr, q̇r)θ̃r + τ̄ r − τ e

whereθ̃i = θi−θ̂i are the estimation errors. The parameter
update laws are given by

˙̂
θi = ΓiY

⊤
i (qi, q̇i)si (8)

whereΓi are constant positive definite matrices.
Proposition 1: (Chopra et al., 2008). Consider the bi-

lateral teleoperator (1) in free motion (τh = τ e = 0)
controlled by (3) using the parameter update law (8) and

1In (Chopraet al., 2008)λ is a positive definite matrix. As will become
clear below, taking it to be a scalar, does not change our main argument.
See remark (i) in Subsection 3.2.

coordinating torques (4), (5). Then, for any constant time-
delayT , all signals in the system are bounded and|ei| →
|ėi| → 0 as t → ∞.

B. A Practical Limitation

In this subsection it is shown that the controller of
(Chopraet al., 2008) will tend to drive to zero the positions
of the joints where gravity forces are non–zero.

Consistently to the convergence claim of Proposition 1,
we will study the constant position equilibria of the closed–
loop system (1), (3), (4), (5), (8), whose state vector is
(ql,qr, q̇l, q̇r, θ̂l, θ̂r).2 Evaluating (5), (8) at the equilib-
rium we get

q⊤Y(q,0) = 0. (9)

Notice that the equilibrium constraint (9) is imposed even
if the manipulators are not in free motion. It will be shown
that this constraint implies a restriction on the gravity forces.
Indeed, from (6) we get

Y(q,0)θ = −g(q), (10)

which establishes a relationship betweenY(q,0) andg(q).
Before considering the general case let us analyze the im-
plications of the equilibrium constraint (9) in some simple
examples. Consider the five–bar linkage system studied in
(Sponget al., 2005), whose gravity forces are

g(q) =

[

a1 cos(q1)
a2 cos(q2)

]

,

with ai ∈ R>0. Selecting a minimal parametrization we get

Y(q,0) = −

[

0 0 cos(q1) 0
0 0 0 cos(q2)

]

,

and the equilibrium constraint (9) is

q1 cos(q1) = q2 cos(q2) = 0.

Hence, the controller tends to drive to zero the position of
the joints where gravity forces are nonzero. A similar situ-
ation happens for of a2-DOF manipulator with rotational
joints, whose gravity forces are

g(q) =

[

a1 cos(q1) + a2 cos(q1 + q2)
a2 cos(q1 + q2)

]

,

and

Y(q,0) = −

[

0 · · · 0 cos(q1) cos(q1 + q2)
0 · · · 0 0 cos(q1 + q2)

]

.

The equilibrium constraint (9) becomesq1 cos(q1) = 0,
q2 cos(q1 + q2) = 0, implying, again, that the position
of the second joint will go to zero if the corresponding
gravity force is not zero. It can be easily shown that
similar restrictions apply for the3-DOF and the Puma
manipulators.

2To avoid cluttering, and with some obvious abuse of notation,we will
not distinguish the constant equilibria from the variable itself, that is, we
omit the standard upperbar notation. Also, when clear from the context, the
subindex(·)i, that identifies the local and remote manipulator, is omitted.
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The question that arises naturally is whether there exists
manipulators for which (9)does not impose a constraint.
That is, is there a manipulator with gravity forces that satisfy
(9) for all q? In the proposition below it is proven that the
answer to this question is negative.

Proposition 2: Consider the bilateral teleoperator (1) in
closed–loop with (3), (4), (5), (8). The set of achievable
(constant) equilibrium positions is strictly contained in

{(ql,qr) ∈ R
2n | q⊤

i Yi(qi,0) = 0, i = l, r}.

Moreover, for all manipulators of the form (1), composed
by kinematic open chains of revolute or prismatic joints
there is no (non-zero) gravity force vector that satisfies (9),
(10) for all q, therefore, this set is astrict subset ofR2n.

Proof: First, notice that (9) and (10) imply

q⊤g(q) = 0. (11)

Now, since gravity forces are the gradient of the potential
energy functionU(q), that is g(q) = ∂

∂q
U(q), (11)

becomes the partial differential equation (PDE)

q⊤ ∂

∂q
U(q) = 0. (12)

It will be proved that the only potential energy function
U(q) that satisfies this PDE isU(q) =constant, that is
g(q) = 0. Toward this end, recall that for manipulators
with prismatic and revolute joints,U(q) is a polynomial
function in the argumentsqi, sin(qi) andcos(qi), that is, a
function of the form

P (q) =
n

∑

j=1

aj

n
∏

i=1

qbi

i

n
∏

i=1

sinci(qi)
n

∏

i=1

cosdi(qi), (13)

where aj are real numbers andbj , cj , dj are nonnegative
integers (Kellyet al., 2005; Sponget al., 2005). It will be
now proved that the only solution of (12) of the form (13)
is the constant solution.

It is possible to prove that all solutions of the partial
differential equation (12) are homogenous, that is, they
satisfyU(q) = U(rq) for anyr ∈ R>0.3 Indeed, evaluating
the time derivative ofU(q) we getU̇ = ∂

∂q
U⊤(q)q̇, which,

in view of (12), is equal to zero along the flow of the system
q̇ = q, i.e. alongq(t) = etq(0). Hence,

U(q(t)) = U(etq(0)), ∀t ≥ 0,

establishing the claim of homogeneity.
Now, notice that the functionP (q) has a limit at zero,

that is P (0) = lim|q|→0 P (q). Second, because of homo-
geneity, ifP (q) is a solution of (12), thenP (q) = P (rq).
Hence, the limits satisfylim|q|→0 P (q) = limr→0 P (rq).
But limr→0 P (rq) = limr→0 P (q) = P (q). Hence,

3This conclusion also follows noting that all solutions of (12) are of the
form

U(q) = f

(

q2

q1

,
q3

q1

, ...,
qn

q1

)

,

wheref : R
n−1

→ R is an arbitraryC1 map (Ibragimov, 1999).

P (q) = P (0). The proof is concluded noting that the only
polynomial function that is constant for allq is the constant
function, and consequentlyg(q) = 0.

The following remarks are in order.

(i) In the derivations above it has been assumed that
the tuning parameterλ is a scalar. If it is a matrix,
(9) becomesq⊤

λY(q,0) = 0, leaving the scenario
discussed above, essentially, unmodified.

(ii) The experiments in (Chopraet al., 2008) yield the
desired behavior because the manipulators are com-
posed by two revolute joints whose DOFs lie on the
horizontal plane. Thus, in such casegi(qi) = 0.

IV. A N EW ADAPTIVE CONTROLLER

Let us defineǫi as

ǫi = q̇i − λei, (14)

where ei has been previously defined in (2) andλ is a
diagonal positive definite matrix.

The proposed controllers are given by

τ l = Yl(ql, q̇l, el, ėl)θ̂l + τ̄ l (15)

τ r = −Yr(qr, q̇r, er, ėr)θ̂r − τ̄ r

where,

Yiθ̂i = −M̂i(qi)λėi − Ĉi(qi, q̇i)λei − ĝi(qi). (16)

Substituting the controllers (15) on the teleoperator dy-
namics (1) and using (14), yields

Ml(ql)ǫ̇l + Cl(ql, q̇l)ǫl = Ylθ̃l − τ̄ l + τh (17)

Mr(qr)ǫ̇r + Cr(qr, q̇r)ǫr = Yrθ̃r − τ̄ r − τ e.

The dynamics of the estimations of the uncertain parameters
are given by

˙̂
θi = ΓiY

⊤
i ǫi. (18)

whereΓi are positive definite matrices. The torquesτ̄ i are

τ̄ i = Kiǫi − Biėi (19)

whereKi are positive definite matrices andBi is diagonal
positive definite.

A. Asymptotic Regulation in Free Motion

Proposition 3: Consider the bilateral teleoperator (1) in
free motion (τh = τ e = 0) controlled by (15) using the
parameter update law (18) and coordinating torques (19)
together with (14). Then, for any constant time-delayT ,
all signals in the system are bounded. Moreover, position
errors and velocities asymptotically converge to zero,i.e.,
|ei| → |q̇i| → 0 t → ∞.

Proof: Let us propose a Lyapunov-Krasovskiĭ candi-
date functionV as the following

V =
1

2

∑

i∈{l,r}



ǫ
⊤
i Miǫi + θ̃

⊤

i Γ
−1

i θ̃i + e
⊤
i λBei +

t
∫

t−T

q̇
⊤
i Bq̇idσ
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This function is positive definite and radially unbounded in
ǫi, θ̃i, ei. Its time-derivative along (17) and (19), using P2,
is given by

V̇ =
∑

i∈{l,r}

[

−ǫ
⊤
i Kiǫi + q̇⊤

i Bėi +
1

2
q̇⊤

i Bq̇i−

−
1

2
q̇⊤

i (t − T )Bq̇i(t − T )

]

.

Notice that, for i = l, q̇⊤
l Bėl = q̇⊤

l B(q̇r(t − T ) − q̇l).
Hence, wheni = r and gathering the crossed terms
− 1

2 [q̇⊤
l Bq̇l − 2q̇⊤

l Bq̇r(t − T ) + q̇⊤
r (t − T )Bq̇r(t − T )],

yields

V̇ = −
∑

i∈{l,r}

[

ǫ
⊤
i Kiǫi +

1

2
ė⊤i Bėi

]

.

Due toV ≥ 0 and V̇ ≤ 0, ǫi, ėi ∈ L2 andǫi, θ̃i, ei ∈ L∞.
From (14) it can be shown thaṫqi ∈ L∞, implying that
ėi ∈ L∞. All these bounded signals together with P1 and
P3 guarantee thatYi ∈ L∞. Now, from (17), using P1 and
P3 together with boundedness ofτ̄ i,Yi, θ̃i, ǫi, q̇i, it can be
conclude thatǫ̇i ∈ L∞. Hence,ǫi ∈ L∞ ∩ L2, ǫ̇i ∈ L∞

support that|ǫi| → 0.
ǫ̇i, ėi ∈ L∞ imply that q̈i ∈ L∞, henceëi ∈ L∞. This

last, and the fact thaṫei ∈ L∞ ∩ L2 prove that|ėi| → 0.
Now, for i = l, el, ėl, ël ∈ L∞ and |ėl| → 0 imply that

limt→∞

∫ t

0
ėldσ = el − el(0) = kl < ∞. On the other

hand,

lim
t→∞

[|ǫl| = |q̇l − λel|] = lim
t→∞

|q̇l − λ(kl + el(0))| = 0

imply that when t → ∞, q̇l → λ(kl + el(0)) that is
constant, and becausëql ∈ L∞ the only constant is|q̇l| →
0. Hence,|el| → 0. The same analysis applies fori = r.
This completes the proof.

V. SIMULATIONS

In the simulations performed, the local and remote ma-
nipulators are modeled as a pair of 2 DOF serial links with
revolute joints. Their corresponding nonlinear dynamics are
modeled by (1). The inertia matricesMi(qi) are given by

Mi(qi) =

[

αi + 2βic2i
δi + c2i

δi + βic2i
δi

]

.

c2i
is the short notation forcos(q2i

). qki
is the articular

position of link k of manipulator i, with k ∈ {1, 2}.
The Coriolis and centrifugal effects are modeled with the
matrices

Ci(qi, q̇i) =

[

−2βis2i
q̇2i

−βis2i
q̇2i

βis2i
q̇1i

0

]

.

s2i
is the short notation forsin(q2i

). q̇1i
and q̇2i

are the
respective revolute velocities of the two links. The gravity
forcesgi(qi) for each manipulator are represented by

gi(qi) =

[

1
l2i

gδic12i
+ 1

l1i

(αi − δi)c1i

1
l2i

gδic12i

]

.

c12i
stands forcos(q1i

+ q2i
). αi = l22i

m2i
+ l21i

(m1i
+

m2i
), βi = l1i

l2i
m2i

andδi = l22i
m2i

. lki
andmki

are the
respective lengths and masses of each link.

A. Controller of (Chopra et al. 2008)

As an illustrative example, let us takeλ = I. Thus,
matricesYi, for the controllers (3), can be written as
[

q̇1i
Y21i

q̇2i
−gc12i

−gc1i

0 c2i
q̇1i

+ s2i
q̇1i

q1i
q̇1i

+ q̇2i
−gc12i

0

]

whereY21i
= 2c2i

q̇1i
+ c2i

q̇2i
− s2i

q̇2i
q2i

− 2s2i
q̇2i

q1i
and

the estimated parameters are given by

θ̂
⊤

i =
[

α̂i β̂i δ̂i
1

l̂2i

δ̂i
1

l̂1i

(α̂i − δ̂i)
]

. (20)

The physical parameters for the manipulators are: the
length of linksl1i

andl2i
, for both manipulators, is0.38m;

the masses for the links arem1l
= 3.9473Kg, m2l

=
0.6232Kg, m1r

= 3.2409Kg and m2r
= 0.3185Kg. The

initial conditions areq̈i(0) = q̇i(0) = 0 and q⊤
l (0) =

[2/5π; 1/3π], q⊤
r (0) = [1/6π;−1/4π]. The controllers

gains areK = 3 and Γl = 0.5I and Γr = 2I. The time-
delays in both paths is set to0.4s.

The first simulations, Figs. 1–3, show the system response
when the human operator and the environment do not exert
any force on the local and remote manipulators. It can be
seen that the parameter estimations converge to constant
values and positions asymptotically stabilize at zero, as
stated by Proposition 2.

The second set of simulations analyzes the time evolution
of the system trajectories when the human operator is
modeled as a spring-damper system with gains25 and 5,
respectively. The desired trajectory of the human operator
is shown in Fig. 4. In this case, Figs. 5 and 6, the parameter
estimation term injects opposite forces that prevent the
teleoperator to move from the equilibriumqi = 0. As in
the previous simulations one can clearly see that positions
asymptotically converge to zero, Fig. 7.

B. Proposed Adaptive Controller

MatricesYi, with λ = I, are given by

−

[

ė1i
Y21i

ė2i
gc12i

gc1i

0 c2i
ė1i

+ s2i
q̇1i

e1i
ė1i

+ ė2i
gc12i

0

]

whereY21i
= 2c2i

ė1i
+ c2i

ė2i
− s2i

q̇2i
e2i

− 2s2i
q̇2i

e1i
and

the estimated parameters follow (20).
The physical parameters, initial conditions and estimation

gains are the same as in the previous sets of simulations.
The controllers gains, in (19), areKi = 3I andB = I.

The simulations with the proposed controller, when the
human operator and the environment do not exert any force
on the local or remote manipulators, are shown in Figs. 8–
10. Notice that position errors asymptotically converge to
zero but positions converge to values different than zero,
i.e., qlj = qrj

6= 0. Figs. 11–13 show that, when the human
exerts forces, the local manipulator moves consequently and
the remote follows the corresponding trajectory.
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VI. CONCLUSIONS

It has been shown that the adaptive controller proposed
in (Chopraet al., 2008) suffers from a practical drawback—
that it is basically applicable only to planar manipulators,
kinematically identical and moving on the horizontal plane.
To overcome this obstacle a new adaptive algorithm is
proposed. The new algorithm assures that, in free motion,
for any constant time delay, all signals in the system are
bounded, and position errors and velocities asymptotically
converge to zero. The simulations performed confirm these
conclusions.
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Kelly, R., V. Santib́añez y A. Loria (2005).Control of robot manipulators
in joint space. Advanced textbooks in control and signal processing.
Springer-Verlag.

Lee, D. y M.W. Spong (2006). Passive bilateral teleoperation with constant
time delay.IEEE Trans. on Robototics 22(2), 269–281.

Niemeyer, G. y J.J. Slotine (1991). Stable adaptive teleoperation. IEEE
Journal of Oceanic Engineering 16(1), 152–162.
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Figura 1. Parameter estimation for the local manipulator whenτh =
τe = 0. Using the scheme of Chopra et al. (2008)
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Figura 2. Parameter estimation for the remote manipulator whenτh =
τe = 0. Using the scheme of Chopra et al. (2008)
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Figura 3. Position of the local and remote manipulators whenτh =
τe = 0. Using the scheme of Chopra et al. (2008)
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Figura 4. Desired trajectory of the human operator.
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Figura 5. Parameter estimation for the local manipulator. Using the
scheme of Chopra et al. (2008)
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Figura 6. Parameter estimation for the remote manipulator. Using the
scheme of Chopra et al. (2008)
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Figura 7. Position of the local and remote manipulators. Usingthe scheme
of Chopra et al. (2008)
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Figura 8. Parameter estimation for the local manipulator whenτh =
τe = 0. Using the proposed controller.
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Figura 9. Parameter estimation for the remote manipulator whenτh =
τe = 0. Using the proposed controller.
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Figura 10. Position of the local and remote manipulators whenτh =
τe = 0. Using the proposed controller.
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Figura 11. Parameter estimation for the local manipulator. Using the
proposed controller.
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Figura 12. Parameter estimation for the remote manipulator. Using the
proposed controller.
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Figura 13. Position of the local and remote manipulators. Using the
proposed controller.
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