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Abstract— We present a general framework for the optimal
control of driftless nonlinear systems defined by means of
distributions of smooth vector fields that generate nilpotent
Lie algebras. A smooth varying inner product on the planes
of the distribution, yields the energy functional that allows to
approach the optimal control problem as a sub-Riemannian
geodesic problem. This class of systems is relevant because
provides good models for nonholonomic systems in mechanics
and automation as well as in classical particle physics. We
discuss two examples of nonholonomic systems within this
formalism, the Cartan geometry that corresponds to the
problem of rolling without slipping or twisting, and the
classical Foucault pendulum that is accepted as indisputable
demonstration of the Earth’s rotation movement.

I. INTRODUCTION

Optimal control problems defined by means of non-linear
driftless systems provide good models for some problems
in mechanics such as car-like robots, trailers, pendula, etc.,
see for instance (Bullo and Lewis, 2005). The study of
optimal trajectories for such systems can be carried out from
the perspective of sub-Riemannian geometry, that generally
speaking is the geometry of non-holonomic constraints, we
refer the reader to the survey (Vershik and Gershkovich,
1991), as well as the book (R. Montgomery, 2002),

The first non-trivial example of sub-Riemannian geom-
etry was discussed in (R. Brockett, 1981), it is defined
by the rank 2 distribution in R3 given by the vector fields
X1 = ∂x + y∂z, X2 = ∂y − x∂z, and the inner product
〈Xi, Xj〉 = δij . The usual Heisenberg multiplication en-
dows R3 with the structure of nilpotent Lie group and the
vector fields X1 and X2 are left invariant. This example is
very well known and stands for the archetype of the theory.
In this paper we discuss a general setting for optimal control
problems defined for nilpotent systems and energy-like cost
functions.

We present two applications of this formalism, first we
discuss the problem of rolling without twisting and slipping
that is based on a rank 2 distribution on R5 that yields
the so-called step-3 nilpotent Cartan Lie algebra. Second,
we present the well known Foucault pendulum based on
an experiment that goes back to 1851 when J.B.L. Foucault
suspended a 67 meter, 28 kilogram pendulum from the roof
of the Pantheon in Paris, and made the observation that
the pendulum’s oscillation plane rotated slowly clockwise
with respect to the Earth. The experiment is recognized as

a feasible demonstration of Earth’s rotation movement. The
underlying Lie algebra for this problem is an extension of
the Heisenberg algebra. To the best of our knowledge this is
the first presentation of the problem in the sub-Riemannian
setting.

Apart from this introduction the paper contains four
sections, in section II, we present the general setting for
nilpotent sub-Riemannian systems including some general
properties of the Lie algebraic structures involved. In section
III we tackle the optimal control problem for nilpotent
systems and energy functionals. We derive necessary condi-
tions for extremals by means of the Pontryaguin Maximum
Principle, the symplectic structure of the cotangent bundle
and the associated Hamiltonian formalism. In section IV we
present two examples of sub-Riemannian geodesic nilpotent
problems that correspond to the nonholonomic problems
of rolling without slipping or twisting and the Foucault
pendulum. In both cases we give some preliminary results
about the geometry of the solutions. Finally we provide
in section V, some conclusions and sketch some ideas for
future work.

II. NILPOTENT SUB-RIEMANNIAN GEOMETRY

Let G be a smooth simply connected manifold and
let ∆ ( TG be a rank n distribution of vector fields
with n < dim(G), a recursive definition of modules
is given by ∆1 = ∆ and ∆j+1 = ∆j + [∆j ,∆] for
j = 2, 3, . . . , with the resulting flag, ∆1 ⊂ ∆2 ⊂
∆3 · · · The growth vector of ∆ at g ∈ G is written as
follows: (dim(∆1(g)),dim(∆2(g)),dim(∆3(g)), . . .). The
distribution is said to be bracket generating if for each
g ∈ G the growth vector reaches the value dim(G), that is,
commutators up to certain order suffice to span the tangent
space at each point.

Definition 1: A sub-Riemannian structure for G consists
of a pair (∆, 〈·, ·〉) of a bracket generating distribution
together with a smooth varying inner product defined on
the planes ∆(g) ( TgG, g ∈ G.

The derived series of an arbitrary Lie algebra g is written
as g ⊇ g(1) ⊇ · · · ⊇ g(k) ⊇ · · · , with g(1) = [g, g] and
g(k) = [g(k−1), g(k−1)]; whereas the lower central series
is written as g ⊇ g2 = g(1) ⊇ · · · ⊇ gk ⊇ · · · , with
gk = [gk−1, g]. The Lie algebra is said solvable if g(h) = 0
for some h, (the index of solvability), and it is said nilpotent,
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if g` = 0 for some `, (the nilpotency), for details see
(Jacobson, 1962).

Definition 2: A sub-Riemannian structure (∆, 〈·, ·〉) is
said to be N−step nilpotent of type (rank(∆),dim(G)), if
the Lie algebra generated by ∆ is nilpotent with nilpotency
equal to N .

The contact sub-Riemannian geometry in R3 corresponds
to the 2-step nilpotent sub-Riemannian geometry of type
(2, 3) realized through the aforementioned three dimension-
al Heisenberg group. The 2-step nilpotent sub-Riemannian
geometry of type (n, n(n + 1)/2) corresponds to higher
dimensional Heisenberg groups, and is discussed in (Liu
and Sussmann, 1995) and (Anzaldo and Monroy, 2006),
the particular case of type (3, 6) is worked out in detail in
(Myasnichenko, 2002).

We consider the sub-Riemannian structure on G given
by the smooth varying inner product defined on the planes
∆(g) ⊂ TgG by means of 〈Xi, Xj〉g = δij .

Definition 3: An absolutely continuous arc-length pa-
rameterized curve t 7→ g(t) is said to be Horizontal or
admissible for ∆ if satisfies ġ(t) ∈ ∆(g(t)) a.e.

The Chow-Rashevsky’s theorem together with the con-
nectedness of G guarantees the existence of an admissible
curve t 7→ g(t), t ∈ [0, Tg] connecting any two given points
gi, gf ∈ G, that is g(0) = gi and g(Tg) = gf , for details
see for instance (Agrachev and Sachkov, 2004).

The sub-Riemannian geodesic problem is the variational
problem of minimization of the energy functional in the
class of admissible curves. We approach this problem as
an optimal control problem, that is, as the problem of
minimizing the functional

Λ(u, g) =
∫
〈ġ, ġ〉 =

∫
u2

1 + · · ·+ u2
n, (1)

among the solutions of the system

ġ(t) = u1X1(g) + · · ·+ unXn(g), g ∈ G, (2)

where the controls u = (u1, . . . , un), are assumed as
measurable and bounded. The set of admissible controls
is denoted as U .

II-A. A model for Nilpotent sub-Riemannian geometries

For distributions of analytic vector fields, the Lie algebra
generated by ∆, in general infinite dimensional, can be
described by writing the vector fields in local coordinates
g = (x1, . . . , xn, y1, . . . , y`) = (x, y) ∈ Rn × R`, where `
is the co-rank of ∆, as follows

Xk =
n∑
i=1

ϕki(g)
∂

∂xi
+
∑̀
j=1

ξkj(g)
∂

∂yj
, k = 1, . . . , n

For then, system (2) is written as follows

ġ = (ẋ, ẏ) = (u Φ,u Ξ), (3)

where Φ = (ϕαβ) and Ξ = (ξµν) are matrices of
order n × n and n × ` respectively. The understanding of
the problem at this level of generality if far from being
complete. We consider here the nilpotent finite dimensional
approximation, obtained by considering finite truncations
of the power series of functions ϕαβ and ξµν , and restrict
them to take values in the variable x = (x1, . . . , xn) only.
This approach fits into the hierarchy of non-holonomic
constraints proposed in (Brockett and Dai, 1993). We take
Φ as n× n identity matrix and the entries of the matrix Ξ
as polynomials in the variable x = (x1, . . . , xn) only, that
is

Xk =
∂

∂xk
+
∑̀
j=1

ξkj(x)
∂

∂yj
, k = 1, . . . , n (4)

In this case system (3) reduces to

ẋ = u, and ẏ = u Ξ(x). (5)

Proposition 1: The Lie algebra generated by the
vector fields (4) is N−step nilpotent with N =
max{deg(ξkj(x))}.

Proof:

Let ξαβγ denote the partial derivative
∂ξαβ

∂xγ
, a direct

calculation shows

[Xj , Xk] =
∑̀
ν=1

= (ξkνj (x)− ξjνk (x))
∂

∂yν
.

An elementary induction argument shows that for any
multi-index (i1, i2, . . . , ir) with r < N one has
that [Xir , [Xir−1 , [· · · [Xi3 , [Xi2 , Xi1 ]] · · · ]]] is equal to∑`
ν=1

(
ξi1νbi1i2···ir (x)− ξi2ν

i1 bi2···ir (x)
)

∂
∂yν

. For then, all com-
mutators of length greater than N vanish.

II-B. The nilpotent Lie-algebraic structure

The Lie algebra generated ∆ determines most of the
geometry of optimal solutions, it is therefore important to
describe bases for the Lie algebra. There is a collecting
process of high order brackets that yields a basis in a
constructive manner, it was originally presented by Philip
Hall in (P. Hall, 1934), and further explained by Bourbaki
(Bourbaki, 1989) and M. Hall (M. Hall, 1950), such a basis
has been recently utilized in control theory, see (Laferriere
and Sussmann, 1993).

Let g be the Lie algebra generated by, each vector field
is considered of being of degree one, higher order brackets
[Xi1 [Xi2 , . . . , [Xik−1 , Xik ] . . .]], are called Lie monomials
of degree k, any element of g is written as linear combina-
tion of monomials. Linear combinations of monomials of
arbitrary degree j are said to be homogeneous of degree
j. Since there are only a finite number of monomials of
an arbitrary degree, then for each positive integer j there
is a finite collection ηj of monomials, which are linearly
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independent, and have the property that each homogeneous
expression of degree j is written as linear combination of
elements of ηj , the elements of such a collection are called
standard monomials and are formally defined by induction.

Definition 4: The standard monomials of degree one are
the X ′is. Assume that the standard monomials of degree
n − 1, are defined, and that they are ≺ −ordered in such
a way that u ≺ v provided deg(u) < deg(v). If deg(x) =
i, deg(v) = j and deg[x, v] = i + j = n, then [x, v] is a
standard monomial if and only if satisfies:

1. x and v are standard monomials with x ≺ v.
2. If v = [y, z] then y � x and y ≺ z.
An element of the Lie algebra g is said to be in standard

form if it is written as linear combination of standard
monomials.The standard monomials form the so-called a
Philip Hall basis for the Lie algebra g.

Example 1: For ∆ = {X1, X2, X3, X4, X5, X6, X7},
the standard monomials of degree 2 are the following

X12 X13 X14 X15 X16 X17

X23 X24 X25 X26 X27

X34 X35 X36 X37

X45 X46 X47

X56 X57

X67

All the monomials of degree 3, Xijk are listed in the
following arrangement

X112 X212 X312 X412 X512 X612 X712

X113 X213 X313 X413 X513 X613 X713

X1144 X214 X314 X414 X514 X614 X714

X115 X215 X315 X415 X515 X615 X715

X116 X216 X316 X416 X516 X616 X736

X117 X217 X317 X417 X517 X617 X717

X123 X223 X323 X423 X523 X623 X723

X124 X224 X324 X424 X524 X624 X724

X125 X225 X325 X425 X525 X625 X725

X126 X226 X326 X426 X526 X626 X726

X127 X227 X327 X427 X527 X627 X727

X134 X234 X334 X434 X534 X634 X734

X135 X235 X335 X435 X535 X635 X735

X136 X236 X336 X436 X536 X636 X736

X137 X237 X337 X437 X537 X637 X737

X145 X245 X345 X445 X545 X645 X745

X146 X246 X346 X446 X546 X646 X746

X147 X247 X347 X447 X547 X647 X747

X156 X256 X356 X456 X556 X656 X756

X157 X257 X357 X457 X557 X657 X757

X167 X267 X367 X467 X567 X667 X767

and the standard monomials are located above the horizontal
lines.

II-C. The 3-step nilpotent Lie algebra with solvability
index 2

For the case 3-step nilpotent with solvability 2, the
Lie brackets with more than 3 factors as well as the

ones of the form [[Xi, Xj ], [Xk, Xl]] vanish, then g =
span{∆, [∆,∆], [[∆,∆],∆]}. The elements of [∆,∆] are
linear combinations of first order Lie brackets of the gen-
erators Xi1i2 with i1 < i2. The elements of [[∆,∆],∆] are
linear combinations of second order Lie brackets Xi1i2i3 . In
this case Jacobi identity reads Xi1i2i3 +Xi2i3i1 +Xi3i1i2 =
0, or equivalently

Xi1i2i3 = Xi3i2i1 −Xi3i1i2 (6)

Jacobi identity leads to nothing new if two indices are
equal, we consider distinct indices, say i3 < i1 < i2, for
then equation (6) means that a bracket Xi1i2i3 with i3 <
i1 < i2 can be expressed in terms of brackets Xijk such
that i < j and i < k. Since the bracket Xiji, with i < j is
subject to no conditions, we conclude that Xijk with i < j
and i ≤ k are the linearly independent brackets.

Proposition 2: If g is a 3-step nilpotent Lie algebra with
solvability index 2, generated by ∆ = {X1, . . . , Xn}, then
dim(g) ≤ 1

3n(n+ 1)(n+ 1
2 ).

Proof:
All the brackets Xi1i2 with i1 < i2 are linearly in-

dependent, and for each i1 = 1, 2, . . . , n − 1 there are
(n − i1)(n − i1 + 1) elements linearly independent of the
form Xi1i2i3 , by writing κ = n− i1 we have that

D = dim([[∆,∆],∆]) =
n−1∑
κ=1

κ(κ+ 1)

=
n−1∑
κ=1

κ2 +
n−1∑
κ=1

κ =
(n− 1)n(n+ 1)

3

in consequence dim(g) ≤ n+ (n−1)n
2 +D.

III. THE OPTIMAL CONTROL PROBLEM

The Hamiltonian functions associated to the vector fields
Xi, Xij and Xijk are denoted as Hi, Hij and Hijk, respec-
tively. The control dependent Hamiltonian writes as follows

Hλ0
u = −λ0

2
[
u2

1 + · · ·+ u2
n

]
+ u1H1 + · · ·+ unHn,

we can write then the necessary conditions for optimal
trajectories.
Maximum Principle. If trajectory t 7→ (g,u) is Λ−optimal
then it is the projection of an extremal curve t 7→ ξ = (g, p),
satisfying
i. Hλ0

u (ξ) ≥ Hλ0
v (ξ), for all admissible controls v ∈ U

ii. H0
u(ξ) is not identically zero.

We assume that λ0 = 1, maximality condition implies
that the optimal control along extremals is given as u =
(H1, . . . ,Hn), for then, the system Hamiltonian becomes
quadratic

H =
1
2

(H2
1 + · · ·+H2

n) (7)
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The covector is written as follows

((H1, . . . ,Hn), (Hj<k), H) ∈ Rn × son × RD,

with D given in proposition 2. The adjoint system of
Hamiltonian equations write then as follows

Ḣj = {Hj ,H} =
∑
k 6=j

HkHjk, (8)

Ḣjk = {Hjk,H} = −
n∑
i=1

HiHijk, (9)

Ḣijk = {Hijk.H} = 0. (10)

Last equation imply that all the length three Poisson
brackets are constant along extremals. In equations (9) we

set Hi = ẋi to obtain d
dt

(
Hij +

∑n
k=1 xkHkij

)
= 0.

If we introduce the skew-symmetric constant matrix with
entries cij = Hij +

∑n
k=1 xkHkij i < j, we obtain, from

equation (8),

ẍi −
n∑
j=1

cij ẋj = −
n∑

j,k=1

xkHkij ẋj .

These equations are given only in terms of the xi, and
together with (2), after plugging the optimal controls (7),
determine completely the geodesics.

IV. EXAMPLES FROM NON-HOLONOMIC MECHANICS

IV-A. Cartan geometry

Rolling bodies without slipping or twisting is a classical
non-holonomic problem that has important applications in
control and automation, a nice presentation can be founded
for instance in (Sharpe, 2000). A more intrinsec approach
has been taken in the recent book (Kobayashi and Oliva,
2008) whereas a control theory perspective is presented in
(A.Agrachev and Y.Sachkov, 1999).

From the geometric viewpoint exposed in this paper it
consists of a 3-step nilpotent sub-Riemannian geometry
given by five dimensional nilpotent Lie group G5 together
with a rank 2 distribution of left invariant vector fields
∆ = {X1, X2}, for which the only non-zero Lie brackets
are the following

[X1, X2] =: X3, [X1, X3] =: X4, [X2, X3] =: X5.

The Lie algebra n5 = span{X1, X2, X3, X4, X5}, is known
as the Cartan Lie algebra or diamond Lie algebra and is
customarily represented by the graph

FIGURE 1. Cartan Lie algebra
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If Hi denotes the Hamiltonian associated with the vector
field Xi, then we have the following non-trivial Poisson
brackets

{H1, H2} = H3, {H1, H3} = H4, {H2, H3} = H5.

The corresponding system Hamiltonian writes as follows

H =
1
2

(u2
1 + u2

2),+u1H1 + u2H2 (11)

the maximality condition of the Maximum Principle, readily
yields u1 = H1 and u2 = H2, therefore the systems
Hamiltonian is quadratic H = H2

1 +H2
2 ,

and the adjoint system can be directly written as follows

Ḣ1 =
1
2
{H1,H} = H2H3 (12)

Ḣ2 =
1
2
{H2,H} = −H1H3 (13)

Ḣ3 =
1
2
{H3,H} = −H1H4 −H2H5 (14)

Ḣ4 =
1
2
{H4,H} = 0 (15)

Ḣ5 =
1
2
{H5,H} = 0 (16)

Observe that H4 and H5 are central elements. Multiplying
third equation by H3, we get

H3Ḣ3 =
[

1
2
d

dt

(
H2

3

)]
= H3(−H1H4 −H2H5)

= Ḣ2H4 − Ḣ1H5 =
d

dt
[H2H4 −H1H5]

therefore we obtain the constant of integration

c2 :=
1
2
H2

3 −H2H4 +H1H5. (17)

Further derivation of (14) yields

Ḧ3 = −Ḣ1H4 − Ḣ2H5 = c2H3 −
1
2
H3

3 ,

in consequence
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Ḣ3Ḧ3 =
[

1
2
d

dt
(Ḣ3)2

]
= c2H3Ḣ3 −

1
2
H3

3 Ḣ3

= c2

[
1
2
d

dt
(H3)2

]
− 1

2

[
1
4
d

dt
(H3)4

]
we obtain then another constant of integration

c4 :=
1
4
H4

3 − c2H2
3 + (H1H4 +H2H5)2

Lemma 1: The elements of set {H, H4, H5, c2} are inde-
pendent first integrals in involution, whereas K := H2

4 +H2
5

and c4 are neither independent nor in involution.
Thus the trajectories in cotangent bundle are given by

the intersection of the cylinder H2
1 + H2

2 = 1 with the
parabolic cylinder 1

2H3 − H2H4 + H1H5 = c2, and they
can be visualized as curves on the sphere (H1 + H5)2 +
(H2 − H5)2 + H2

3 = H + 2 c2 + H2
4 + H2

5 . Furthermore,
circular coordinates can be used for parameterizing surface
( 11)

H1 = H sin θ
H2 = H cos θ

Equations ( 12) and ( 13) readily imply θ̇ = H3. The
constants of motion H4 and H5 determine another quadratic
surface say H2

4 + H2
5 = `2 which can be parameterized

similarly as

H4 = ` cos θ0
H5 = ` sin θ0

Thus, using c2 we can write (17)

θ̇2 = 2(c2 +H`− 2H` sin2([θ + θ0]/2).

From where a Kinetic analog can be established with a
simple pendulum (Whittaker, 1999).

IV-B. The Foucault pendulum

It consists of simple pendulum of length ` and point
mass m oscillating taking into account Earth’s rotation. Let
{X,Y, Z} an inertial coordinate system such that Earth’s
rotation coincides with the Z direction, and let ~ω be the
angular velocity of rotational motion. If {x, y, z} is the
position of the mass measured from a fixed coordinate
system with origin located at latitude α on Earth’s surface
measured from equator, the x direction on a meridian great
circle in north-south sense, the y direction on a latitude
circle in west-east sense and the z direction perpendicular
to the tangent plane at the intersection of both circles. If
the origin is at the suspension point of the pendulum, the
direction cosines are given as cosφx = x/`, cosφy = y/`
and cosφz = −z/`.

For a mass m in a gravitational force field ~FG = −~∇VG,
the trajectories are determined by minimizing the total
energy functional, moreover if we take into account the
holonomic constraint

x2 + y2 + z2 − `2 = 0, (18)

we have that the complete functional is written as follows

S =
∫ (

(
m

2
(ẋ2 + ẏ2 + ż2 − 2gz) + λ0r

2

+ λ1(ξ̇ + yż − zẏ) + λ2(η̇ + zẋ− xż)
+ λ3(ζ̇ + xẏ − yẋ)

)
dt.

Set λ1 = −mω cos(α), λ2 = 0 and λ3 = mω sin(α) and
the differentials ξ̇dt, η̇dt and ζ̇dt. The last differentials
do not alter the Euler-Lagrange equations for ~r, but are
essential for the sub-Riemannian approach. The action can
be reinterpreted as follows: the parameters λi are Lagrange
parameters associated with the nonholonomic constraints

dξ + ydz − zdy = 0,
dη + zdx− xdz = 0,
dζ + xdy − ydx = 0.

This assumption is equivalent to take ωi as constants,
since ξ, η, and ζ are cyclic variables, which is the case
of the problems under study. Instead of the last constraints,
consider the equivalent 1-forms

w1 = dξ + ydz − zdy,
w2 = dη + zdx− xdz,
w3 = dζ + xdy − ydx,

in such a way that that ker{w1, w2, w3} leads to the
constraints. Introducing the vector q = (x, y, z, ξ, η, ζ) in
a six dimensional smooth manifold M, it follows that

q̇ = ẋX1(q) + ẏX2(q) + żX3(q), (19)

where the vector fields in TM are given as

X1 = ∂x + y∂ζ − z∂η,
X2 = ∂y + z∂ξ − x∂ζ ,
X3 = ∂z + x∂η − y∂ξ.

The vector fields are dual to the 1-forms wi and generate
a six dimensional step-2 nilpotent Lie algebra g with non-
zero brackets

[Xi, Xj ] = Xij = −Xji, i < j,

and with

X12 = −2∂ζ , X13 = 2∂η, X23 = −2∂ξ.
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Fig. 1. Cross sections of sub-Riemannian trajectories

Since TqM is six dimensional for all q ∈ M, the
distribution ∆ = {X1, X2, X3} is bracket generating. Let
G be the Lie group associated to g. The center of g is just
[∆,∆], let us denote by G0 the corresponding center of G.
The vector fields in ∆ will be called horizontal, and the
fields in [∆,∆] will be called vertical.

A sub-Riemannian structure for this problem is given by
the pair formed by the distribution ∆ and the Euclidean
metric given by the kinetic energy. The six dimensional
space with coordinates q = (x, y, z, ξ, η, ζ) will be called
total space M, the three dimensional subspace with coor-
dinates (x, y, z) the base space B. Define the projection
map π : M → B, as π(x, y, z, ξ, η, ζ) = (x, y, z), then
the fiber Fp at p ∈ B is the set Fp = π−1(p) and the
spaces π−1(p) for all p ∈ B are homeomorphic to a space
F called the typical fiber. Since the group G0 acts on F
by automorphisms, (M, B, π,G0) define a fiber bundle with
typical fiber F . Here, it is a principal fiber bundle since F
and G0 coincide as vector spaces.

The trajectories for the Foucault pendulum can be ex-
plicitly calculated following standard integration techniques,
a detailed presentation of such process together with an
exhaustive geometric analysis shall be exposed elsewhere.
The Fig. 1, shows some cross sections of the trajectories
obtained numerically with a CAS, for some specific values
of the frequencies.

V. CONCLUSIONS AND PERSPECTIVES

We present in this paper a general setting for sub-
Riemannian nilpotent systems and the associated optimal
control problem. The Pontryaguin Maximum Principle pro-
vides necessary conditions for optimal trajectories, and yield
explicit expressions for the system Hamiltonian in terms
of the optimal controls. However, provides no help for
discerning the integrability of the system. In some cases

the underlying Lie algebraic structure together with some ad
hoc integration procedures can be of some use, nevertheless,
a more general theory needs to be developed for explaining
generic obstructions for integrability.

Non-holonomic mechanics as well as robotics and au-
tomation provided a great source of problems that can be
formulated within this formalism. The application of the
geometric techniques can eventually unveil some properties
for solutions of such problems, including control design and
stabilization.
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