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Comparison of different control algorithms for pneumatic actuators
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Abstract— Air used as power transmission for simple uses
or power supply is, as mentioned in [1], known more than
two millenniums. For newer applications in the industry, the
attractiveness of pneumatic systems, based in the cleanness,
low prices, weight to force ratio and the easy assembling are
basically the most important matters. For these reasons too it
is on the one hand interesting to develop control applications
with pneumatic actuators, not only for automation industry but
at all in robotic applications too.
But on the other hand, due to the high no linear nature of
pneumatic systems, it is not as easy as for hydraulic systems,
which seems comparable. For this reason the investigation in
the last years was increasing, but there are still some steps
missing to use as good as possible the properties of pneumatic
actuators or pneumatic systems.
This paper deals with a valuation of the simulations of some of
the most used control techniques like a simple PID of the area
linear control, Feedback Linearization from the area nonlinear
control and Sliding Mode Control for the area of robust control.

I. I NTRODUCTION

Most of the recent papers are using techniques like
advanced PID’s ([2]), PVA - Controllers ([2], [3]), Exact
Linearization ([4], [5]); Flatness based Control ([6]), Sliding
Mode Control ([7], [8]), Cascade Control ([9], [10], [11]),
Model Reference Adaptive Controller (MRAC) ([12]), Neu-
ral Networks ([13]) etc. with growing success to realize the
challenge of control pneumatic systems. Due to the strong
nonlinearity of the system it is nearly imposible to know well
the dynamic model, or to use a model which is reflecting the
real behavior of the system in a usable order. In fact some
of the above mentioned controllers are in the fine position,
that the used model reflects the reality sufficiently exact and
that it is in a still usable order.
We won’t discuss the differences between all these con-
trollers rather this paper evaluates the simulations of 3 of
the common controllers with a focus on its performance on
tracking tasks. To get an objective overall idea, an index
I(e, u) of error (e) and energy (u) is used. At the end of the
paper a conclusion is presented.

The used indexI(e, u)

I(e, u) =

√
1
T

∫ T

0

(e2 + u2)dt

calculated with the trajectory error and the control signal
helps to integrate the energy in this contemplation. It is
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assumed, that the output signal of the controleru is propor-
tional to the necessary energy to control the system. Taking
a closer look it is the voltage to control a proportional valve,
which is controlling the mass flowsm1 and m2, which is
equivalent to the energy of the system, the compressed aire.

II. T HE DYNAMIC MODEL

The base for all the 3 simulated controllers is the well
known and in several papers ([4], [14], [6], [3], [11], [8],
[15], [10], [1], [13]) used dynamical model of the pneumatic
system,

x =




y
ẏ
p1

p2


 =




x1

x2

x3

x4


 (1)

A simplified block-diagram is shown in figure 1.

Fig. 1. Block Diagram of the electropneumatic system

Principally based on Newton’s second law and the first
law of thermodynamics used for an adiabatic processes with
the dynamics shown in the following equations.

ẋ1 = x2 (2)

ẋ2 =
A1

M
x3 − A2

M
x4 − A1 −A2

M
patm

− FFRV IS(x2)
M

− FFRNL(x2, x3, x4)
M

(3)

ẋ3 = − γ

V10 + Ax1

(
x2x3A−RTṁ1(x3, u)

)
(4)
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ẋ4 =
γ

V20 + A(L− x1)
(
x2x4A−RTṁ2(x4, u)

)
(5)

ṁ1 = ρ0Cmaxu





ps

√
1−

(
( x3

ps
−b)

1−b

)2

, u ≥ 0

x3 , u ≤ 0
(6)

ṁ2 = −ρ0Cmaxu





ps

√
1−

(
( x4

ps
−b)

1−b

)2

, u ≥ 0

x4 , u ≤ 0
(7)

With the following variables and parameters:y = x1

= displacement (m), ẏ = x2 = velocity (ms ), ÿ = ẋ2 =
acceleration (ms2 ), p1 = x3 = pressure chamber1 (Pa), p2 =
x4 = pressure chamber2 (Pa), m1 = mass flow chamber1
(kg

s ), m2 = mass flow chamber2 (kg
s ), A1 = cross section

of the piston chamber1 (4.9087 ∗ 10−4m2), A2 = cross
section of the piston chamber2 (4.9087 ∗ 10−4m2), M =
mass (5.8kg), patm = atmospheric pressure (1 ∗ 105Pa),
FFRV IS = Coulomb friction force (B = 240), FFRNL =
no linear friction forces (not considered),γ = adiabatic
index (1.4), V10 = dead zone chamber1 including tubes
(1.5 ∗ 10−5m3), V20 = dead zone chamber2 including tubes
(1.5 ∗ 10−5m3), L = length of piston rod (0.6m), R = gas
constant of aire (287.05 J

kg∗K ), T = temperature (293.15K),

u = control signal,ρ0 = density (1.204 kg
m3 ), Cmax = mass

flow constant (1), ps = supply pressure (Pa), b = critical
pressure ratio (0.582)

III. S IMULATIONS

For the simulation are selected 3 of the most used con-
trollers of the following areas of control: linear control, non
linear control and robust control.

The simulations are basically all programmed in the struc-
ture of figure 2.

Fig. 2. Structure of Simulations in Simulink

The desired trajectoryyd, ẏd, ÿd is in all the 3 cases a sine
wave with the frequency of1Hz, the amplitude of0.15m

and a bias of0.25m. The piston is in all the 3 simulations
in it’s home position0.25m.

A. PID Controller

The first simulation is a simple PID with the controller
structure:

u(t) = Kp ∗ ey(t) + Ki ∗
∫ t

0

ey(τ)dτ + Kd
dey(t)

dt
(8)

with ey = ydesired − yreal and the manually tuned
controller parametersKp = 0.0000025 Ki = 0.00000018
Kd = 0.00000025.
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Fig. 3. PID: Desired trajectory (w), real trajectory (y) and error (ey)
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Fig. 4. PID: Mass flowsm1 andm2

The figure 3 shows the curves of the desired trajectory,
the real trajectory and the resulting error. The errorey has
the maximum value of5mm. As we can see in the figure
4 and 5, the controller is controlling really chaotically the
mass flows and with a result of this, the pressuresp1 andp2

are chaotic too. With an IndexI(e, u) of 5.0308 ∗ 10−3 the
controller has the highes index, what we will discuss later
in Conclusions. The last figure (Figure 7) shows the control
signalu.
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Fig. 5. PID: Pressuresp1 andp2
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Fig. 6. PID: IndexI(e, u)

B. Exact Linearization Controller

The next simulated controller is a controller based on exact
linearization. This controller was developed in varios papaers
([4] and [5] to mention only two of them).

Using the dynamic model of the system, the controller
results in the next equations, following the law of control

u =
v − α(z)

β(z)
(9)

and the equations forv, α andβ. The general idea of exact
linearization is to compense, and in the best case eliminate,
the non linear terms of the system by it’s law of controlu.
Differentiate equation (3) results

ẋ2 =
A1
M

ẋ3 − A2
M

ẋ4 − 1
M

ḞFRV IS − 1
M

ḞFRNL (10)

Replacingẋ3 with equation (4),ẋ4 with equation (5) and
separating for terms withu and withoutu we get

...
y = α(x1, x2, x3, x4) + β(x1, x3, x4)u (11)

with

α(x1, x2, x3, x4) = −A1
M

γx3x2

L01 + x1
− A2

M

γx4x2

L + L02 − x1

− 1
M

ḞFRV IS − 1
M

ḞFRNL (12)
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Fig. 7. PID: Control Signal u

β(x1, x3, x4)u =
(

A1

M
b3 +

A2

M
b4

)
u (13)

and the termsb3 andb4

b3 =
γTRρ0Cmax

A1(L01 + x1)
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−b)
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)2

, u ≥ 0

x3 , u ≤ 0
(14)

b4 = − γTRρ0Cmax

A2(L02 + x1)
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√
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(
( x4

pv
−b)

1−b

)2

, u ≥ 0

x4 , u ≤ 0
(15)

v will take the form

v =
...
w + ka(ëy) + kv(ėy) + ky(ey) (16)

As we can see, substituting (9), (12), (13) including (14)
/ (15) and (16) in (11) our control law (u) is canceling the
non linear termsα andβ.

The controller parameters (ka, kv, ky) of equation (16) are
calculated for poles in−6, −100 −100. The parameters are
ka = 206, kv = 11200 andky = 60000.

In the figures from 8 to 12, we can observe the good
response of the controller, with a small errorey of 1.5 ∗
10−3m and really smooth control movements, see behavior
of mass flows (Figure 9) and pressures (Figure 10). The index
I(e, u) reaches a value of2.5363 ∗ 10−3.

C. Sliding Mode Controller

The last simulated controller of this paper is a Sliding
Mode Controller. Sliding Mode is recently used in some
papers for controlling tasks of force controlling and, like
in this case, for trajectory controlling. This controller is
published in the paper [2].

The following sliding surface is proposed:

S = ẋ2 − ÿd + 2λ(x2 − ẏd) + λ2(x1 − yd) (17)

As mentioned in the paper and as well known too, the sliding
surface has the function to keep the state of the system on it
in a "sliding mode" after the state has reached at the surface.
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Fig. 8. EX LIN: Desired trajectory (w), real trajectory (y) and error (ey)
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Fig. 9. EX LIN: Mass flowsm1 andm2

To realize that the state reaches and stay there (bounded
by the range of an defined layer) at the sliding surface, 2
control signalsueq andus are used, which are added to get
the finalu.

u = ueq + us (18)

with the switching control signal

us = −kssat(
S

φ
) (19)

where

sat(
S

φ
) =

{
S
φ |Sφ | ≤ 1
sign(S

φ ) |Sφ | > 1
(20)

and the equivalent control signal

ueq =
1
n0

[ÿd + d2ẋ2 + d1x2 − 2λ(ẋ2 − ÿd)− λ2(x2 − ẏd)]

(21)

To obtain theueq the equation (17) is derivated, setted to
Ṡ = 0 and solved for u. The resulting

...
y = ÿ2 is substituted

by
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Fig. 10. EX LIN: Pressuresp1 andp2
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Fig. 11. EX LIN: IndexI(e, u)

ÿ2 = −d2ẏ2 − d1y2 + n0u (22)

which is the nominal plant of the model.
The parametersn0 = 926.8, d1 = 405.8 andd2 = 17.27

are taken from [2]
The controller parameters are manually tuned toλ = 150,

ks = 25 and φ = 4. To have comparable signals ofu, the
signal is saturated from−1 ∗ 10−7 to 3.5 ∗ 107. Without
saturation, the signalu reaches huge values and the Index
I(e, u) will not be usable for comparisons. This saturation
doesn’t effect the magnitude of the error which isey = 4 ∗
10−4m.

As you can see in the figures from 13 to 17, the controller
is working well, but with the disadvantages of Sliding Mode
Control, for example the chaotic mass flowsm1 and m2,
based on the fast changing control signalu (chattering). The
index I(e, u) reaches a value of1.8213∗10−3 and seems to
be the most efficient of the 3 compared controllers.

IV. CONCLUSIONS

Of the results we can conclude various points. The PID
is able to control the system in simulation to the small error
of 5.7 ∗ 10−3m. The was reason enough for the last years
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Fig. 12. EX LIN: Control Signal u
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Fig. 13. SMC: Desired trajectory (w), real trajectory (y) and error (ey)

to keep using the PID controller as one of the most used
controllers in the industry for trajectory tasks. But with faster
signal he reaches it’s limits. His response of the control signal
to the error is quite good. In few words, on the one hand
the controller doesn’t save energy in form of compressed
aire, but on the other hand it neither doesn’t destroy the
energy with unnecessary movements. The controller based
on exact linearization is working very well, reaches a really
good value for the errorey = 1.5 ∗ 10−3m and a small
index I(e, u) of 2.5363 ∗ 10−3 too. The matter of this
method is that is necessary to know very well the dynamic
model of the system to be able to cancel all non linearities.
In the simulation the values are really good, in reality it
will be complicated to get these values or to get a good
approximation, because of uncertainties in the model, caused
of friction etc. But keeping an eye on the smooth signal of
control u, this is a very good controller to save the live of
equipment, because it is not demanding hard changing’s with
steep ascent’s of signals and of the system, what leads to
small energy amounts too . Another problem may be the
internal dynamic’s of the system. Including more complexly
structures like the dynamics of the valve, tubes etc. it may
be difficult or nearly impossible to handle the model for an
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Fig. 14. SMC: Mass flowsm1 andm2
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Fig. 15. SMC: Pressuresp1 andp2

online control process. The Sliding Mode Control shows it’s
capacity of the group robust controllers and minimizes the
errorey to the lowest value ofey = 4∗10−4m and the lowest
I(e, u) = 1.8213 ∗ 10−3 too. Observing the control signalu
the controller shows it’s characteristic switching/chattering,
what it makes posible to use less expensive on/off high speed
valves instead of the expensive proportional valves. Another
point is, that it is not necessary to know well the systems
dynamics. This helps this kind of controller to get fast and
good results, at least in simulations.
In further investigations open topics will be investigated and
implemented to a experimental system.
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