
                 Congreso Anual 2009 de la Asociación de México de Control Automático. Zacatecas, México.

On generalized synchronization of different order
af�ne chaotic systems: a submanifold approach

J.P. García Sandoval1, R. Femat2 and V. González Álvarez1
1Departamento de Ingeniería Química, Universidad de Guadalajara,

Guadalajara, Jalisco 44430, México
e-mail: [paulo.garcia],[victor.ga]@cucei.udg.mx
2División de Matemáticas Aplicadas, IPICyT,
San Luis Potosí, San Luis Potosí 78216, México

e-mail: rfemat@ipicyt.mx

Resumen�Regulation theory is used to address the syn-
chronization phenomena of chaotic systems. Our results are
based on the solution of Francis-Isidori-Byrnes equations to
derive the synchronization submanifold. Thus conditions
for complete or partial synchronization are depicted. This
analysis is not restrictive with respect to the master and
the slave systems dimension, therefore it can be applied to
strictly different systems with the same order or even different
order systems. Finally, workbench examples are presented to
illustrate the results. c AMCA.
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I. INTRODUCTION
Synchronization of chaotic systems is an interesting

topic that, since early 90's, has caught the attention of
the nonlinear science community. Two research directions
have been already conformed in synchronizing chaos: (i)
analysis and (ii) synthesis. Analysis problem comprises
(a) the classi�cation of synchronization phenomena (Femat
y Solis-Perales, 1999), (Brown y Kocarev, 2000); (b) the
comprehension of the synchronization properties as, for
instance, robustness (Kocarev et al., 2000) or geometry
(Josic, 2000; Martens et al., 2002); and (c) the construction
of a general framework for unifying chaotic synchroniza-
tion (Brown y Kocarev, 2000; Boccaleti et al., 2001).
On the other hand, synthesis of synchronization focus on
the problem of �nding the control effort such that two
chaotic systems share the same time evolution in some
sense (see, e.g., among the others, Ott et al., 1990; Cicogna
y Fronzoni, 1990; Loskutov, 2001; Chacón, 2006). Both
analysis and synthesis directions are active research areas
and one of the current challenges is to achieve and explain
the synchronization of chaotic system with different models.
In regard to the analysis of strictly-different systems, the

reported studies have been focussed on the existence of syn-
chronization manifolds for coupled systems. These studies
have shown that such manifolds are strongly dependent on
measures from Lyapunov exponents (Josic, 2000; Martens
et al., 2002). Synchronization of different models has been
addressed in nonidentical space-extended systems (for the
case of parameter mismatching) (Boccaletti et al., 1999)

and structurally nonequivalent systems including delay
(Boccaletti et al., 2000). In (Josic, 2000) chaotic synchro-
nization has been also analysed from invariant manifolds
in terms of the existence of a diffeomorphism between the
attractor of the coupled systems, which is closely related
to generalized synchronization (GS). Josic (2000) had also
included synchronization of different systems, and illustra-
tive examples have shown the existence of synchronization
manifolds (e.g., between Rössler and Lorenz). This analysis
has departed from rigorous de�nitions and is thorough for
the complete synchronization (i.e., the synchronization of
all master states with all corresponding states of the slave
system, Femat y Solis-Perales, 1999). Unfortunately, such
a formalism for other synchronization phenomena (as, for
example, the partial-state synchronization, Femat y Solis-
Perales, 1999) is still obscure. Additionally, the generalized
synchronization problem between different order systems is
still open and few works have pointed at this direction; how-
ever, all efforts have been focussed on particular systems
(see for instance, Ge y Yang, 2008; Rodríguez et al., 2008)
and general results must be established.
On the other hand, broadly speaking, one of the solutions

to the tracking problem in dynamical systems which are
subjected to external disturbances and reference signals
(both generated by a dynamic system better known as the
exosystem) can be formulated as the problem of �nding a
solution to the so called regulation problem. Under such
a formulation, the problem consists, in �nding a feedback
scheme such that the equilibrium point of the closed loop
system is asymptotically stable and the tracking error ap-
proaches zero even under the in�uence of external signals.
The regulation problem has been extensively studied in lin-
ear systems (Francis, 1977). These ideas were then extended
to the nonlinear case in (Isidori y Byrnes, 1990), where it
was demonstrated that the corresponding solution depends
on the solution of a pair of matrix partial differential
equations, known henceforth as the Francis-Isidori-Byrnes
equations. Technically speaking, the regulation problem and
the synchronization problem are different from the point
of view of physical meaning and their application �elds,
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however, some analogies can still be established between
them.
In this paper, borrowing the regulation theory from the

control framework, we address the synchronization prob-
lem of nonlinear systems with not necessarily the same
dimension in order to explain how the complete or par-
tial synchronization phenomena is achieved. The paper is
organized as follows: In section II the regulation theory
is presented; then, in section III an analogy of this theory
is applied to the synchronization to derive conditions for
complete or partial state synchronization. The analysis is
carried out on SISO af�ne systems. Workbench examples
are analysed in section IV. Finally, this work is closed with
some concluding remarks.

II. FUNDAMENTAL REGULATION THEORY

In the literature of control of dynamical systems, reg-
ulation problem is often addressed as forcing the output
of a dynamical system to reach a predetermined reference
signal. Although this is the case for many systems, due to
their nature, for others, such as synchronization systems,
varying reference signals are imposed to obtain a suitable
behavior. In this section, a brief review of results in regard
to the regulation problem is presented. Let us consider the
following nonlinear time-invariant system

_xS = FS (xS ; w; u) (1)
e = h (xS ; w) ; (2)

where the �rst equation (1) describes the dynamics of a
plant, whose state xS is de�ned in a neighborhood U of
the origin in Rm, with a control input u 2 Rp and subject
to a set of exogenous input variables w 2 Rn which
includes disturbances to be rejected and/or references to be
tracked. We consider that the �rst approximation matrices of
system (1) are respectively, A = [@FS=@xS ](xS ;w;u)=(0;0;0)
and B = [@FS=@u](xS ;w;u)=(0;0;0). Equation (2) de�nes
an error variable e 2 Rp expressed as the function h :
U � Rn ! Rp. Let us assume that the exogenous inputs
w, is a family of all functions of time that are solution of
a homogeneous differential equation

_w = Fw (w) (3)

with initial condition w (0) ranging in a neighborhoodW of
the origin in Rn. System (3) is a mathematical generator of
all possible exogenous input functions and it is better known
as the exosystem. Moreover, it is assumed that FS , h and
Fw are smooth functions and, without loss of generality,
it is also assumed that FS (0; 0; 0) = 0, Fw (0) = 0, and
h (0; 0) = 0. Thus, for u = 0, the composite system (1)-
(3) has an equilibrium state (xS ; w) = (0; 0) yielding zero
error.
The State Feedback Regulation Problem for system (1)-

(3) is de�ned for tracking reference signals and rejecting
the disturbance signals while maintaining the closed-loop
stability property. The regulation problem can be formulated

as the problem of determining a certain submanifold of the
state space (xS ; w), where the tracking error e is zero,
which is rendered attractive and invariant by feedback.
Then the Nonlinear Regulation Problem (NRP) consists in
�nding, a function u = � (xS ; w) such that the following
conditions hold:
C1 Stability: The equilibrium point xS = 0, of

the closed-loop system without disturbances is
asymptotically stable.

C2 Regulation: For each initial condition
(xS (0) ; w (0)) in a neighborhood of origin,
the solution of the closed-loop system satis�es
the condition l��mt!1 e (t) = 0.

The next theorem states conditions for the existence of a
solution to the NRP.
Theorem 1: (Isidori, 1995) The Nonlinear Regulation

Problem is locally solvable if and only if the pair (A;B) is
stabilizable and there exist mappings

xS = � (w) ; and u =  (w) =

0B@ 1 (w)
...

p (w)

1CA ; (4)

with � (0) = 0 and  (0) = 0, both de�ned in a neighbor-
hood W � �W of the origin, satisfying the conditions

@� (w)

@w
Fw (w) = FS (� (w) ; w;  (w)) ; (5)

0 = h (� (w) ; w) ; (6)

for all w 2W �.�
Conditions (5) and (6) are known as the Francis-Isidori-

Byrnes equations (FIB) (Byrnes y Isidori, 2000) used to �nd
the zero tracking error submanifold. The mapping xS =
� (w) represents the steady-state zero output submanifold
whose time derivative produces (5), while u =  (w) is the
steady state input which makes invariant this steady state
zero output submanifold.

III. SYNCHRONIZATION ANALYSIS
III-A. Problem statement
Let us consider the following master nonlinear dynamical

system

_xM = fM (xM ) ; (7)
yM = hM (xM ) ; (8)

where xM is a state vector de�ned in a neighborhood W
of the origin in Rn and FM (xM ) is a smooth vector �eld.
yM 2 R denotes the output of master system. If system
(7)-(8) is chaotic, its trajectories are bounded. Additionally,
let us now take a dynamical system

_xS = fS (xS) + gs (xS)u; (9)
yS = hS (xS) ; (10)

where xS , de�ned in a neighborhood U of the origin in
Rm, denotes the state vector of the slave system, u 2 R
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is the control command, fS is a smooth vector �eld, and
yS 2 R is the output of slave system.
In synchronization, under master-slave interconnection,

system (7) describes the goal dynamics while system (9)
represents the experimental system to be controlled. Thus,
the Synchronization Problem can be stated as follows:
Given the transmitted signal yM , to design a signal u (t)
which synchronizes the output of the slave system (10) with
the output of the master system (8). That is, given the
synchronization error

e = hM (xM )� hS (xS) ; (11)

�nd a function u (xS ; xM ) such that l��mt!1 e (t) = 0, for
all t and any xS (0) 2 U , xM (0) 2W .

III-B. Synchronization submanifold

Several kinds of synchronization have been de-
�ned (Boccaletti et al., 1999; Femat y Solis-Perales,
1999): i) Complete exact synchronization (CES) (where
kxS (t)� xM (t)k � 0 for all t � 0), ii) Complete
inexact synchronization (where kxS (t)� xM (t)k � 0 for
all t � 0), iii) Partial synchronization (where at least for
one state xi (t), for any i � n, kxS (t)� xM (t)k 6= 0)
and iv) Almost synchronization (where only the phase of
the driving system is similar to the response system with a
different amplitude).
Actually, the synchronization problem can be addressed

as a regulation problem for the above de�nitions. Since
the master dynamical system (7) is similar to system (3),
the slave system (9) is a particular case of system (1)
and the synchronization error (11) has similarities with the
regulation error (2). Hence, Theorem 1 can be adapted to
solve the synchronization problem. The next assumption is
instrumental to the following analysis.
Assumption 1: Let us consider that the relative degree of

(9) is well de�ned and equal to �.
Since the relative degree is well de�ned, it is possible

to �nd a diffeomorphism which transforms system (9) into
a normal form. Moreover, for the synchronization analysis,
one may split the inner dynamics in order to consider the
asymptotic stable and Poisson stable modes; hence one may
assume that there exists a diffeomorphism

xS = �S (xS) =

0@ �
�
xS2

1A (12)

where the states variables � 2 R�, � 2 Rm1�� and
xS2 2 U2 � Rm2 with m = m1 +m2, which in particular
are de�ned as �i = Li�1fS

hS (xS), i = 1; 2; : : : ; �, with
L0fShS (xS) = hS (xS), �j = �S;j (xS), j = 1; 2; : : : ;m1�
�, with �S;j (xS) such that LgS�S;j (xS) = 0, and xS2 =
 S;j (xS), j = 1; 2; : : : ;m2. This diffeomorphism trans-

forms system (9) into the normal form
_�i = �i+1; i = 1; 2; : : : ; �� 1; (13a)
_�� = a (�; �; xS2) + b (�; �; xS2)u; (13b)
_� = q (�; �; xS2) ; (13c)

_xS2 = FS2 (xS2) ; (13d)

where a (�; �; xS2) =
h
L�fshS (xS)

i
xS=�

�1
S (xS)

,

b (�; �; xS2) =
h
LgSL

��1
fs

hS (xS)
i
xS=�

�1
S (xS)

,

qj (�; �; xS2) =
�
Lfs�S;j (xS)

�
xS=�

�1
S (xS)

for j = 1; 2; : : : ;m1 � � and FS2 (xS2) =�
Lfs S;j (xS)

�
xS=�

�1
S (xS)

for j = 1; 2; : : : ;m � m1.
Here, we are assuming that equation (13d) is Poisson
stable. That is, system (13d) yields trajectories which will
return at future time arbitrarily close to any initial condition
xS2 (0) 2 U2 � Rm2 persistently. This fact arises because
of oscillatory nature of chaos. In addition we are assuming
that _� = q (0; �; 0) is asymptotically stable. Then, the
states � and � are stabilizables via feedback control.
Notice that when synchronization error (11) is equal to

zero, the states of the slave system related to yS become a
function of the master system states related to yM , while the
states xS2 evolve independently in a region of U2 depending
on the initial conditions xS2 (0). In general, when e = 0,
� and � are function of xM and xS2, i.e. there exists a
synchronization submanifold col (�; �) = � (xM ; xS2) and
this submanifold becomes invariant under the input u =
 (xM ; xS2). This idea is formalized in the next Proposition.
Proposition 2: The Synchronization Problem is locally

solvable if and only if the pair (A;B) is stabilizable and
there exist mappings�

�
�

�
= � (w) ; and u =  (w) ; (13n)

with � (0) = 0 and  (0) = 0, both de�ned in a neigh-
borhood W

� � U
�

2 � W � U2 of the origin, satisfying the
conditions

@� (w)

@w
Fw (w) = FS1 (� (w) ; w) (13ña)

+GS1 (� (w) ; w)  (w) ;

0 = hM (xM )� hS (� (w)) ; (13ñb)

where

w =

�
xM
xS2

�
; Fw (w) =

�
FM (xM )
FS2 (xS2)

�
;

FS1 (� (w) ; w) = col
�
�2; : : : ; ��; a; q

�
and

GS1 (� (w) ; w) =

0BBBBB@

0BBB@
0
...
0
b

1CCCA
��1

(0)(m1��)�1

1CCCCCA
for all w 2W � � U�

2 .�
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Figura 1. Interconnections diagram for generalized synchronization. (a)
Total synchronization, when dim (xS2) = 0. (b) Partial synchronization,
when dim (xS2) 6= 0.

Demostración: The proof is straightforward from the
analogy with the regulation problem (Isidori, 1995).
Also notice that if dim (xS2) = 0, in the framework

of generalized synchronization, the slave system is totally
synchronized; i.e., there exists the map xS = ��1S (� (xM ))
which allows to calculate xS from xM , despite a different
dimension between the master and the slave, by means of
the mapping � (xM ) which is a contraction if m1 < n or
an immersion if m1 > n. This relation is schematically
presented in the interconnections diagram of Figure 1a.
Also notice that, if in addition m1 = n, because of the
map ��1S (� (�)), not necessarily xS (t) = xM (t), unless
both the master and the slave system were identical, since
in this case, map ��1S (� (�)) would be the identity and
the traditional complete exact synchronization would be
reached. On the other hand, if dim (xS2) 6= 0, only the
�rst m1 states of xS are synchronized with the combined
variables xM and xS2, i.e., when the synchronization is
achieved (and therefore e = 0), the m1 states of vector
xS1 = col (�; �) reside in the invariant submanifold � (w)
which depends in general on m2 + n states. Hence, in
some sense, m1 states are synchronized with the master
system; however they may also depend on the remaining
m2 states of the slave system, xS2, therefore, one gets the
map �S1 (xS) = � (xM ;�S2 (xS)) (see Figure 1b). In this
case only partial synchronization will be reached.

III-C. Details on designing synchronization force
Since synchronization equations (13ñ) hold for any di-

mension for the slave and master systems, depending on the
master system dimension and the relative degree of system
(9), two cases are considered:
Case 1: If � < n, the diffeomorphism � = �M (xM ),

where �i = Li�1fM
hM (xM ), i = 1; 2; : : : ; �, while �j =

�M;j (xM ), j = �+ 1; : : : ; n, transforms (7) into

_�i = �i+1; i = 1; 2; : : : ; �� 1
_�� = r1 (�) (16a)
_�j = rj��+1 (�) ; j = �+ 1; : : : ; n

where rj (�) =
�
LfM�M;j (xM )

�
xM=�

�1
M (�)

for j =

1; : : : ; n� �+ 1.

Case 2: If � � n, the diffeomorphism � = �M (xM ) =

col
n
Li�1fM

hM (xM ) ; i = 1; 2; : : : ; n
o
, transforms (7) into

_�i = �i+1; i = 1; 2; : : : ; n� 1 (17)
_�n = r (�) ;

where r (�) =
h
LnfMhM (xM )

i
xM=�

�1
M (w)

.
Notice that for case 2 the master system dimension is

necessarily smaller than the slave system dimension, while
for case 1 such dimension may smaller, greater or equal.
Using the normal form for both the master and slave

systems [equations (17) or (16a) and (13a)], the synchro-
nization error can be written as

e = �1 � �1: (18)

Now let us analyse each case.
III-C.1. Case 1: � < n: Considering (16a) and (13) for

the master and slave systems, respectively, and (18) as the
synchronization error, from equations (13ñ) we deduce the
following:
The states � are completely synchronized with the �rst �

states of � , since

�i = �i (�) = �i; i = 1; 2; : : : ; �; (19)

which in original coordinates is equivalent to

Li�1fS
hS (xS) = Li�1fM

hM (xM ) ; i = 1; 2; : : : ; �: (20)

From (20) we deduce that the hyperplane de�ned by
Li�1fS

hS (xS) � Li�1fM
hM (xM ) = 0 contains the evolution

of the remaining states of xS , i.e. � and xS2. The syn-
chronization input necessary to obtain (20) is given by the
mapping

 =
r1 (�)� a (�; �ss; xS2)

b (�; �ss; xS2)
(21)

where �ss is the solution of

_�ss = q (�; �ss; xS2) ; (22)

for a given initial condition �ss (0) = �0. However, since
_� = q (0; �; 0) is asymptotically stable, there exists class K
function �w and a class KL function � such that

k�ss (t)k � � (�0; t) + �w (w) (23)

where w =
�
�T xTS2

�T . Notice that w contains the master
and slave variables. Given a large enough time t � T ,
� (�0; t) ! 0, hence for t � T , �ss no longer depends
on initial condition. Then, �ss together with

_w = R (w) ; (24)

where R (w) = colf�2; : : : ; ��; r1 (�) ; : : : ; rn��+1 (�) ;
FS2 (xS2)g, generate a central manifold and for this reason
for large enough time �i;ss = �i+� (w), i = 1; 2; : : : ;m1��
and  eventually depend only on w. From the previous
discussion, one conclude that when synchronization is
achieved, � is totally synchronized, while � is, in some
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sense, synchronized with the master system; however, it
also depends on the Poisson stable states of the slave
system, xS2. Notice that if dim (xS2) = 0, the slave
system is totally synchronized, i.e., there exists the map
xS = �

�1
S (� (�M (xM ))). Here map � allows that n 6= m.

Another interesting case is when the master and the slave
systems are identical, then it can be de�ned the same dif-
feomorphism for both systems, i.e., �S (xS) = �M (xM ).
However, if the initial conditions for the Poisson stable
subsystems are not the same, its evolution through time may
differ and only partial synchronization may be achieved.
On the other hand, if the initial conditions of the Poisson
stable subsystems are identical, total synchronization can be
achieved.
III-C.2. Case 2: � � n: Considering (17) and (13) for

the master and slave systems, respectively, and (18) as the
synchronization error, from equations (13ñ) we deduce the
following:
The �rst n states of � are directly synchronized with �,

since
�i = �i (�) = �i; i = 1; 2; : : : ; n; (25)

while the � � n following states of � are in the tangent
space of �n since

�i = �i (�) = Li�n�1R r (�) ; i = n+ 1; n+ 2; : : : ; �;
(26)

where R (�) = col f�2; : : : ; �n; r (�)g. In original coordi-
nates

Li�1fS
hS (xS) = Li�1fM

hM (xM ) ; (27)

Lj�1fS
hS (xS) = Lj�n�1R LnfMhM (xM ) ; (28)

where i = 1; 2; : : : ; n and j = n + 1; n + 2; : : : ; �, with
the elements of R as Ri (xM ) = LifMhM (xM ), i =
1; 2; : : : ; n. Therefore complete synchronization is achieved
for the �rst m1 states of xS . On the other hand, The
synchronization input is given by the mapping

 =
r (�)� a (�; �ss; xS2)

b (�; �ss; xS2)
(29)

where �ss is the solution of

_�ss = q (�; �ss; xS2) ; (30)

which, for the same reasons described in the case 1,
forms a central manifold with � and xS2 and therefore the
synchronization input  depends only on � and xS2.
Finally, for both cases, if dim (xS2) > 0 but dim (�) = 0,

only � is synchronized with xM and xS2 only affects the
synchronization input .

IV. EXAMPLES
In this section we present three workbench examples.
Example 1: Identical master and slave systems:

Consider a Duf�ng system

y" (t)� y (t) + y3 (t) + � _y (t) = � (t) (31)

where � (t) = � sin (ct+ �) represents an oscillatory
driving signal, which can be described by the dynamical
equation �" (t) = �c2� (t). This system is use as a master
system to synchronize the system

z" (t)� z (t) + z3 (t) + � _z (t) = b� (t) + u (t) (32)

where u (t) is the input used for the synchronization whileb� (t) is an oscillatory driven input. We consider that the
synchronization error is e = z � y. The state space
representation of the master and the slave systems are
Master: _xM;1 = xM;2, _xM;2 = F (xM ), _xM;3 = cxM;4 and
_xM;4 = �cxM;3.
Slave: _xS;1 = xS;2, _xS;2 = F (xS) + u (t), _xS;3 = cxS;4
and _xS;4 = �cxS;3,
where F (x) = x1�x31��x2+x3, while the synchronization
error is e = xS;1 � xM;1. These systems can be written as
(16a) and (13) if we de�ne � = xM , � =

�
xS;1 xS;2

�T ,
xS2 =

�
xS;3 xS;4

�T , a (�; xS2) = �1 � �31 � ��2 + xS2;1
and b (�; xS2) = 1. Notice that dim (�) = 0, since both
xS2 and the last two states of � are Poisson stable, when
synchronization is achieved xS;1 = xM;1 and xS;2 = xM;2

however, if the initial conditions of the last two states of the
master and slave systems are different, then xS;3 6= xM;3

and xS;4 6= xM;4. In this case partial synchronization is
achieved. On the other hand, if the initial conditions of the
last two states of the master and slave systems are identical,
then xS = xM and complete synchronization is obtained.
Example 2: Synchronization of different systems:

Lets consider now the Rössler model as a master system
and the Lorenz model as its slave system, where mappings
fM , hM , fS , gS and hS are respectively:
Rössler's:

fM (xM ) =

0@ �xM;2 � xM;3

xM;1 + axM;2

a+ xM;3 (xM;1 � b)

1A ; hM (xM ) = xM;2;

(33)
Lorenz's:

fS (xS) =

0@ � (xS;2 � xS;1)
�xS;1 � xS;2 � xS;1xS;3
��xS;3 + xS;1xS;2

1A ; gS (xS) =

0@01
0

1A ;

(34)
and hS (xS) = xS;1, where a, b, �, � and � are positive
constants. The relative degree of the slave system is 2.
Therefore, by de�ning � =

�
xS;1 � (xS;2 � xS;1)

�T and
� = xS;3, the normal form of (34) is similar to (13a)-
(13d) where a (�; �) = � (�� 1) �1 � (1 + �) �2 � ��1�,
b (�; �) = � and q (�; �) = ��� + �21 + ��1�1�2. Notice
that dim (xS2) = 0 and that q (0; �) = ��� is asymp-
totically stable. On the other hand, if one de�ne � =�
xM;2 xM;1 + axM;2 xM;3 � a=b

�T , then the Rössler
model is similar to (16a) with r1 (�) = ��1+a (�2 + 1=b)�
�3 and r2 (�) = �b�3 + (�3 + a=b) (�2 � a�1). Notice that
when � = 0, r2 (�) = �b�3, which is asymptotically stable.
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The input  given by (21) is

 (�) =

�
1� �� 1

�

�
�1+

�
1 +

1 + a

�

�
�2�

1

�
�3+�1�ss;

(35)
where �ss is the solution of _�ss = ���ss + �21 + ��1�1�2
given by

�ss (t) = �0e
��t+

Z t

0

�1 (�)

�
�1 (�) +

1

�
�2 (�)

�
e�(t��)d� :

(36)
For large enough time, the �rst term of (36) disap-
pears and �ss depends only on �1 and �2. There-
fore, when synchronization is achieved, xS;1 = xM;2,
and xS;2 = xM;1=� + (1 + a=�)xM;2, while xS;3 =R t
0
xM;2 (�)xS;2 (�) e

�(t��)d� and complete synchroniza-
tion is achieved.
Example 3: Synchronization of systems with different

order:
Now we consider the synchronization of Duf�ng equation
similar to the one considered in example 1,

y" (t)� y (t) + y3 (t) + � _y (t) = � (t) + u (t) (37)

where � (t) = � sin (ct+ �) is a driving signal, with the
Chua system as the master system. Chua system is an
electronic circuit with one nonlinear resistive element. The
circuit equations can be written as a third order system
which is given by the following dimensionless form

_xM;1 = 1 (xM;2 � xM;1 � f (xM;1)) (38)
_xM;2 = xM;1 � xM;2 + xM;3 (39)
_xM;3 = �2xM;2 (40)

where f (xM;1) = 3xM;1 + 0;5(4 � 3) � [jx1 + 1j �
jx1 � 1j], while the slave system is _xS;1 = xS;2, _xS;2 =
F (xS) + u (t), _xS;3 = cxS;4 and _xS;4 = �cxS;3, with
F (xS) = xS;1 � x3S;1 � �xS;2 + xS;3. Notice that xS 2 R4
and xM 2 R3, hence the slave system has higher dimension
than the master system. De�ning � =

�
xS;1 xS;2

�T ,
xS2 =

�
xS;3 xS;4

�T , a (�; xS2) = �1 � �31 � ��2 + xS2;1
and b (�; xS2) = 1, Duf�ng system can be written as (13).
On the other hand, Chua system can be written as (16a)
if we de�ne � =

�
xM;3 �2xM;2 �2xM;1

�T . r1 (�) =
��2�2�1+�3, and r2 (�) = 1

h
�2 � �3 � bf (�3)i, wherebf (�3) = 3�3 + 0;5 (4 � 3) (j�3 + 2j � j�3 � 2j).

When synchronization is achieved xS;1 = xM;3 and
xS;2 = �2xM;2, this explain the chiral behavior (since
sign (xS;2) = � sign (xM;2)) (Femat y Solis-Perales, 2008)
and why xS;2 and xM;2 have the same oscillatory frequen-
cies but with a different amplitude (it relation is given by
�2). xS;3 and xS;4 remain independents and the synchro-
nization input (21) must be  (�; xS2) = ��2�2�1+�3�
�1 + �

3
1 + ��2 � xS2;1, which depends on � and xS2.

V. CONCLUSIONS
A synchronization analysis of chaotic systems has been

developed. The proposed analysis approach is based on

the extension of the regulation theory. As a result, the
synchronization manifold and the driving force necessarily
to obtain the synchronization can established by solving
a set of partial differential equations. Using this approach
it is been possible to explain the behaviors observed in
the synchronization practice, for instance, the complete and
partial-state synchronization as well as the phase synchro-
nization. This methodology can be systematically applied in
order to predict when total or partial synchronization will
be achieved and, though the synchronization manifold, to
elucidate which is the relation between master and slave
synchronized states. A main advantage of this approach
lies in the possibility to analyse the synchronization phe-
nomena for strictly different systems as well as for different
order systems. Finally some workbench examples has been
presented to illustrate the results.
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