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Abstract— The availability of novel technologies for healthy range; namely euglycemia. This fact has opened
exogenous insulin release and continuous glucose monitog  many questions in control theory discipline.
have increased the possibilities of developing an artificla There are many interesting issues respect to handle the

pancreas. This contribution tackles the design of &f..-based blood al | | in T1DM via cl d-l h
controller to compensate hyperglycemia in Type 1 diabetes /000 GIUCOSE l€VEL In via closed-loop approach.

mellitus (T1DM) under two scenarios: exercise and nocturna  One of the challenges is related to the high variability of
hypoglycemia. Two biosignals are integrated to the blood blood glucose levels due to exogenous events (as, among

glucose control problem: lactate is used in exercise sceriar others, different kind of carbohydrate load during meal,
while adrenaline releasing is used for nocturnal hypoglycmia. glucose uptake during exercise) or endogenous events (as

The effects of each scenario are represented by weighting h inh ti Lal ducti d uptak
transfer functions at the control design. Each weighting C1anges in hepatic or renal glucose production and uptake).

function accounts the effect of hepatic glucose productioand ~ From the control theory viewpoint, the exogenous events
defines separately the following relations: (a) from plasmdc ~ can be formulated as disturbances while the endogenous
glucose to lactate during exercise and (b) from plasmatic ones can be seen as uncertain parameter changes. Thus, the
glucose to adrenaline during nocturnal hypoglycemia. Alsp  controlled plant corresponding to the diabetic patient is a
the controller is designed by adding a frequency restrictio . . . . .
in control signal to incorporate frequency components by nonlinear dy_nam_lcal system_ with param_etrlc uncertainties
the pancreatic insulin release pattern in a healthy subject and uncertain disturbance inputs. In this sense, although
A nonlinear physiological model, including Glucose-Insuih-  control design is not an easy task, this problem has been ad-
Glucagon dynamics and counter-regulatory effects, is usetb  dressed mainly via four control approaches with promissory
Zhow the t'mg'reSponste. Ofr:he closed-loop including actuat  egyits: model-based predictive control (Hovorka, 2004),
ynamics and parametric changes. adaptable techniques (Chase y Shaw, 2005), fuzzy logic
Palabras clave: Blood glucose control, Controlled drug (Campos-Delgado y Hernandez-Ordofiez, 2006) &hd
delivery, Biomedical systems. robust control (Parker y Doyle, 2000; Ruiz-Velazquez y
Femat, 2004).

Respect toH,, approaches, the synthesis for blood

Novel technology has been well accepted in clinicagjlucose control is based on plant frequency response in
applications about therapy of Type 1 Diabetes Mellitusuch manner that the control design ensures closed-loop
(T1DM) (Linkeschova y Raoul, 2000; Kaufman y Gib-performance in the frequency interval where plant is sen-
son, 2001) via continuous subcutaneous insulin infusiositive. The controller captures the frequency components
(Lenhard y Reeves, 2001) or blood glucose continuownd is capable to ensure closed-loop stability in an optimal
monitoring (Mastrototaro, 2000). This fact has been encouor suboptimal sense. Moreover, as parametric uncertaintie
aged by the potential improvement of glucose control imre included in closed-loop, thE., approach can provide
T1DM patients. The success is a result of four decadesbust stability and robust performance to the closed-loop
of scientific and technological work directed to developrhis allows to compensate effects of parameter uncersinti
an artificial pancreas (Albisser y Leibel, 1974; kadishpn the frequency response to control the plant (Parker
1964; Bequette, 2005). Thus, the underlying idea is tg Doyle, 2000; Ruiz-Velazquez y Femat, 2004; Zhou y
construct a feedback closed-loop approach to mimic tHeoyle, 1998). In addition,H..-based approach allows to
pancreatic insulin release of a healthy subject through thiecorporate weighting functions into the controller desig
exogenous delivery of insulin and continuous monitoring oSpecifically, a weighting functions has been recently incor
glucose (niddkd, 2006). Together with the development gforated (Femat y Ruiz-Velazquez, 2009) such that control
insulin pump as actuator and glucose monitoring as sensdesign captures the temporal pattern of insulin delivesynfr
the design of control algorithms has been tackled sindeealthy pancreas.
early 1990s (Fisher, 1991) with the role of computing the In this contribution, alH.-based controller is proposed
necessary insulin to lead the blood glucose level arourtd ensure suboptimal performance and closed-loop stabilit

I. INTRODUCTION
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for the blood glucose level in TIDM patients. The proposecthinute; see Figures 1 and 5.A in (Stuart y Kreisman, 2001)
controller incorporates biosignals such that two scenafer glucose and lactate data, respectively. By means of
ios are accounted: exercise and nocturnal hypoglycemitie System ldentification Toolbdsy M atLab®, we found
Lactate concentration is used as biosignal during exercise fourth-order transfer function whose parameters were
whereas adrenaline stands for the biosignal related to noadjusted to find the least distance (in the sense of minimal
turnal hypoglycemic. Both scenarios are very importardquare) between the transfer function response and the ex-
in blood glucose control of TIDM because, on the on@erimental data (Ljung, 1999). The resulting stable transf
hand, exercise is often a therapy recommendation and, émction (roots:\y, ., = —0,7554+£0,9823¢, A, = —0,12
the other, nocturnal hypoglycemic is present in patientand Ay, = —0,0019), called W,(s), is given in Equation
life because long night fasting. As summary, we proposgl).
to design a nominal ., control to manage glycemia in
exercise and hypoglycemic scenarios. The content of this —4,7 % 10735% +0,0652 + 0,055 + 5,1 x 10~%
article is as follows: Section Il deals with mathematical V2(5) = — G 5o T o 07, 753 c100 ~ P
modeling of weighting transfer functions of lactate an . .
adrenaline for exercise and hypoglycemia. Also, the mod lI'B' Hypoglycemia and adrenaline
of a frequency restriction in the control signal is presdnte  The nocturnal hypoglycemic scenario arises when the
Section Ill presents the integration of the weighting tfans blood glucose level reach 40 mg/dl. Under such a con-
functions in a closed-loop system to control glycemia ireentration, energy is depleted and body cells have not
exercise and hypoglycemia. Also, the design of a nomingnough available energy to carry out their functions. In
H.. controller is presented, in addition to the controkritical situations, nocturnal hypoglycemia could be ffata
performance and some numerical simulations about glucoBecause glucose is the main source for brain energy. From
control in exercise and hypoglycemia. Finally, in the lasthis fact, a very important aim on T1DM therapy is to
section a discussion and some remarks are presented. accountor to prevent hypoglycemic scenarios. We consider
the nocturnal hypoglycemic because it is an event causing
[I. TRANSFER FUNCTIONS FOR BIOSIGNALS clinical emergency.

Towards the control synthesis, input-output identificatio As blood glucose concentration becomes lower than
of a transfer function for each scenario is carried out td0 mg/dL, the glucose hepatic production is stimulated.
incorporate frequency components about their interactidAne of the effects of hormone adrenaline releasing is to
on carbohydrate metabolism. Thus, the metabolic signap§omote the hepatic glucose production necessary to avoid
(namely biosignals) can help us to include input-outpueng-term hypoglycemia episodes (Cryer, 2002). That is,
effects in H,,-based control schemes. In here, we considdrormone adrenaline is involved in the counter-regulatory
two scenarios with the corresponding biosignals: (i) Lacta effects of glucose homeostasis, which appears as the blood
as a metabolic signal related to exercise and (ii) Adreealirglucose control falls to hypoglycemic. Specifically, retsen
respect to nocturnal hypoglycemia. Finally, one more trangesults show that adrenaline is released under nocturnal
fer function is shown to add insulin pattern releasing. Nexhypoglycemia. Now, from the control theory viewpoint, the
details on the transfer functions are presented and, afagr t blood glucose stimulus on the adrenaline release can be
both transfer functions are used in Section 3 to incorporatéterpreted as an input-output relation. We use the experi-

frequency contents onto thé., synthesis. mental data reported in (Schultes, 2007) to obtain a transfe
_ function for glucose concentration as input and adrenaline
lI-A.  Exercise and lactate concentration as output in nocturnal hypoglycemia. Our

Lactate is a metabolite released into the blood streaiflea is to incorporate frequency components from glucose-
during middle-effort exercise and appears as a metabokglrenaline relation into the control synthesis. Thus, from
product when muscle cells take energy from stored glycdlata presented in Figure 2.B in (Schultes, 2007), we use
gen (Guyton, 1991). Although the metabolic path for lactatthe System Identification Toolbaf MatLab® to propose
production is a multifactorial pand complicated proces$t second-order transfer function whose parameters where
we know that blood glucose concentration is one of thgelected having a minimal distance (in the sense of least
stimulus for producing lactate. Such a stimulus-responsgluares) between the experimental data and transfer func-
effects might be used as an input-output relation to idgntiftion response (Ljung, 1999). The resulting functidin (s),

a transfer function. We use experimental data from the blodél @ marginal stable one (rootss, =0y A4, = —0,7322)
glucose to lactate concentrations in a healthy trainecestibj given by:

which were repprted in (Stuart y Kreisman, 200_1), to obtain 0,07785 -+ 0,432
a transfer function for the glucose-lactate relation. Wa(s) = T 1073225

The classical ARX technique was used to identify a o T
continuous transfer function assuming the glucose coh-C- Fréquency restriction function
centration as the input signal and lactate concentration asln addition to equations (1) and (2), we consider an input-
the output. Data were measured a with sampling aboutdutput relation to restrict the frequency components of the

)
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control signal to that contained in a temporal pattern athe H.,-based synthesis is discussed. Finally, the section is

pancreatic insulin release by a healthy subject. The teansfclosed with an evaluation of the designed controller to show

function was derived in (Femat y Ruiz-Velazquez, 2009its capability on handle different hypoglycemic scenarios

but it is taken here for completeness. Note there is differences with previous reports in sense
Since insulin infusion in T1DM is desired to be closerthe biosignaling for glucose to lactai&;, and adrenaline

to the healthy pancreas behavior, frequency componeritg, are incorporated to account frequency components from

of the releasing pattern by pancreas is incorporated to tlegercise and nocturnal hypoglycemia.

closed-loop. Thus, an input-output relation is derivedrfro

intravenous insulin delivery as stimulus to the blood gheco d,

concentration as response. That is, insulin infusion stand |

for input while blood glucose concentration is the output W

for this specific transfer function. As in (Femat y Ruiz- z, z,  zZ,

Velazquez, 2009), we use experimental data reported in { \ \

(Bergman, 1979) to proposed a fourth-order transfer func- W W, | W, | |Pu

tion and the the parameters of the function were selected

using System Identification Toolbdyy M atLab® to min- ‘ J +

PPC WI" 4’21

function response in the sense of least square) The regultin
stable transfer function (roots:,, ,, = —0,0192+1,6146¢ y
and Ay, ,, = —0,1758 + 1,27213) is given by: Wl d,

2,385% — 2,0652 + 4,7s — 4,09 3) Figura 2. Block diagram fof{~.-based synthesis.
544+ 0,39s3 +4,27s2 + 0,985 + 4,3

Wu(s) =

[lI-A. Control problem formulation

In previous control approaches (Parker y Doyle, 2000;
Ruiz-Velazquez y Femat, 2004; Femat y Ruiz-Velazquez,
e 2009), authors addressed the hyperglycemic control by
rejecting or attenuating disturbances by carbohydratd.mea
Here, we formulate the disturbances rejection problem but
considering effects of exercise and nocturnal hypoglyeemi
in the system output. Such effects are directly related to
the output via the modeled weighting transfer function
functions Wr.(s) and Wa(s). The designed controller is
denoted ad(;;,(s) to allude to biosignals. The description
of each block in Figurgl2 is as follows:

(i) W, W4 and W,, correspond to transfer functions
described in Section II.

i (i) P, is the controlled plant and stands for a/6erder
transfer function which is derived by linearization and
posterior balanced truncation analysis of thet&9er-
der nonlinear physiological model proposed by Sorensen
It should be noted that the improvementiéf, robust per- (Sorensen, 1985). The linearization was made around the
formance, includingV, (s), has been discussed in (Fematunique equilibrium point of the Sorensen model reported at
y Ruiz-Velazquez, 2009). As a complement, the frequendfRuiroz, 2007). SaP,. is given by Equation 4 in the top
response of the three weighting transfer functions are showf the next page.

Magnitude

10
Frequency (radls)

Figura 1. Frequency response W0fz, (s), Wa(s) and Wo(s).

in Figure[d. (iii) Ppnpe (Equation 5)is a 64 order transfer function
representing the frequency contents by meal disturbanee du
. Ho CONTROL FOR EXERCISE AND to carbohydrate ingesta (Ruiz-Velazquez y Femat, 2004).
HYPERGLYCEMIA (iv) P.s (Equation 6) is the following second-order

The goal of controlling blood glucose concentration onmodel used to represent the blood glucose dynamics in a
T1DM patients is to handle hyperglycemia. Here, the trandealthy subject after the ingestion of a carbohydrate load
fer functions in previous section are added to hyperglyeem{Ruiz-Velazquez y Femat, 2004).
control as is shown in Figuld 2. In this section, we firstly
show how the complementary functions are integrated at
the closed-loop to formulate the control problem. Then,
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6 +1,0225% + 0,339s% + 0,037s% + 4,57 x 10~4s2 — 6,44 x 10~°s — 9,381 x 107
$6 1 1,0225% + 0,3391s% + 0,038s3 + 1,647 ><(41)0—3s2 +2,728 x 1055 + 1,511 x 107

Ppe(s) =

Pr(s) = —1,403 x 10735% + 7,813 x 10735 4+ 2,53 x 107353 + 2,39 x 10~ 452 + 7,948 x 1005 + 7,73 x 10~8
mpel) = 6 + 1,02255 + 0,339s% + 0,038,92’51),647 % 10352 + 2,728 x 1055 + 1,51 x 107

3,51 ®)
s2 +0,0420s 4+ 0,9 x 10—3

(V) Wy, Wy, and W, are respective transfer functionsgiven by:
for noisy measurements, performance, and meal dynamics.

They are given by: Kio(5) = Niio(s)/Dio(5) 8)

Prep(s) =

0,885 + 0,01 1 1 With Nyio(s) = —38,9757 —55,965° — 192,857 — 217,9s% —
P = o0 T 100000 VT Bhst1s) 252957 — 192257 — 46,75% — 6,752 — 0,203s — 1,208 x
1077 and Dy (s) = 510 + 48,145 4 98,355% 4 314,857 +
%47,656 +565,45° +5055* + 251,253 445,792 +25+1,3 x
10—6. The performance for both full order controller (solid

ﬁ‘ne) and the reduced (dash-dot lin&),;,(s) is shown in

As summary, the problem is worded as followso
solve the tracking problem with disturbances attenuatio
but accounting biosignals for insulin delivery, exerciaad
nocturnal hypoglycemia; where system output stands f
arterial glucose concentration, control input is defined a
the intravenous insulin infusion, reference signal is the g

igure[3.

cose curve tolerance of a healthy subject, and disturbanc 10—

corresponds carbohydrate ingesta —_ Fullorder controller

[1I-B. SuboptimalH, synthesis A T e
Now we show the synthesis of the suboptimiél, oL ke o

controller from the block diagram in Figulé 2. The problen
is that the arterial glucose concentration has to track tt
dynamics of the reference modg).;(s) attenuating dis-
turbances by carbohydrate ingesta but considering exerc e
and nocturnal hypoglycemia. Then, a generalized plant
derived from each input signal (whexds the control signal

anddy, d, are perturbed signals from carbohydrate load an
measurement noise, respectively) to each output signal ‘ ‘
is the blood glucose concentrati6ty;, andz1, zs, 21, 24 10 1 Frequely acts 10 10
are the output signals of the weighted functions of intgrest

The input and output signals Of_the SyStem. in Fiddre 2 Calkigura 3. Frequency response of the full and reduced orderaiter.
be related through the generalized plan via the following

Magnitude

S

transfer matrix: It is possible to see small differences between perfor-
mance of both controllers.
WpPmpeWm 0| WpPpe The closed-loop transfer function from output signal
G (5) = 8 8 WW;, @ to control signalu with full order controller is a 4G+
pioA) = e order transfer function. Nevertheless, with the reduction
0 0 | WaPpe : ,
“PropeWm —Wn | —Ppe we obtain a reduced closed-loop transfer function, called

Ghio(s) is used for synthesis of thH, control by LMI Tyu(s), given by

approach. After the standard iteration process R@bust NT,u(s)

Control Toolbox by MatLab®, the suboptimal problem Tyu(s) = ﬁ(s) 9)
is solved withy = 0,625 by ensuring internal stability v

(see (Zhou y Doyle, 1998)). The resulting controllewhereNT,,(s) = —5,041x1075s%+1,09x 10~ 4s%—1,3 x
is a 23¢h order one whose Hankel values ase = 107457 +1,8 x 1073s% 41,06 x 1073s° + 3,4 x 107 3s* +
(0,74,0,64,0,41,0,39,0,23,0,13,0,02, 0,01, 0,002, 0,0004,  2,08x 10~3s%+1,17x 10452 +1,35x 10 65— 3,31 x 107
0,0003,0,0,0,0,0,0,0,0,0,0,0,0). By inspection ofc andDT,,(s) = s'°+2,225%+7,7858+9,13s7 + 13,6855 +
values, the full order controller is reduced to @#Dorder  9,28s° + 4,24s* + 0,47s% + 0,025 + 6,14 x 107%s +
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4,33 x 107, The frequency response of full order closeddashed line, respectively. Figuté 7 shows arterial insulin
loop transfer function and the reduc&y,(s) is presented concentration of the Sorensen model. Now, the variation
in Figure[4. The numerical implementation df,;,(s) of the metabolic parameters; is considered to mimic
was done usingSimulink of MatLab® with the original the nocturnal hypoglycemic. This parameter also is in the
19-¢th order nonlinear Sorensen model (Sorensen, 1988ynamic equation of hepatic glucose concentration but it
as is shown in Figur€l5. Next, the control performancaffects the frequency component of the hyperbolic function
is evaluated in exercise and hypoglycemic scenarios vthat defines the hepatic glucose production (see Figures 5

numerical simulations. and 7 in (Quiroz, 2007)). As in figurdd[$,7, the nominal
value ofns (16,0) is considerate and the variation of 50 %
107 : : : and 100 % from its nominal value. The response in the blood

Full order closed~loop transfer function glucose concentration und&f,;, (s) considering parametric
""" Reduced closedTloop ansier nciga ™ | changes in hepatic glucose production (related to nocturna
hypoglycemic scenario) is shown in Figuié 9. Nominal
value of g ¢ is black solid line, and decreasing of 50 %
and 100% onys o (dash-dot and dashed line, respectively,
whereas arterial insulin concentration is shown in Fiduire 8

Magnitude

— Reference

Nominal valuenA 0

. .
10 10 10 10 10°
Frequency (rad/s) s N L N0+ 50%n,

,,,,,, N0+ 100%n,

Figura 4. The closed-loop frequency responsé&’pf (s).

Blood glucose concentration (mg/dL)

n Z
. , , , ,
1 >l & & —»@ % 50 100 150 200 250 300
ol Time (min)
o

Kbio Blooq glucose concentration  (y)
e SRy Figura 6. Blood glucose concentration during exercise aten

alimentos

Meal |

Figura 5. Numerical implementation of system in Figlite 2 ——  Nominal valuen, ;
28~ SN S Ny 50%N, o 7

,,,,,, N, o+ 100%n,

IV. EVALUATION OF Kj;, EXECUTION 2 ]
IV-A. Controlling hyperglycemia ' ‘

24

Insulin (mU/min)

Hyperglycemia is attenuated despite changes in param
eters related to exercise and nocturnal hypoglycemia; set

2214

Figs.[BE9. In order to mimic such a glucose increment, a 200 1
positivechange (increment) in parameter related to hepatic ‘ ‘ ‘ ‘ ‘
glucose production was induced in simulation onto the ° % 0 ey 2 20 20
nonlinear Sorensen model. The change was done according

with the parametric sensitivity analysis reported in (Qaijr Figura 7. Control signal: in exercise scenario.

2007). That is, the most sensitive parameter to increase

the glucose concentration is a metabolic parameter denoted

by ns. In order to test the execution aKy;,(s) under V. CONCLUDING REMARKS

exercise scenario, numerical experiments were simulatedThe numerical implementation of A suboptimal .,

for the nominal value of), and two changes equivalent controller Ky;,(s) is performed on the nonlinear T1DM
to 50% and 100% from its nominal value, respectivelypatient and shows that: (i) under exercise scendfig,(s)

In Figure[® underK;;,(s) action, considering increment avoids long-term hyperglycemic states due to the inherent
in parameter related to hepatic glucose production (reprexcrement in hepatic glucose production and (ii) at noaurn
senting exercise scenario), nominal valuengf is solid hypoglycemic scenario, the control by, (s) is suitable
line, change of 50% and 100% opn  are dash-dot and to handle hyperglycemia and to reduce the hypoglycemic
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