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Abstract— This paper shows graph similarities between
Brusselator and Oregonator reaction mechanisms, using the
jacobian matrix in convex coordinates as an adjacency matrix
which defines a weighted directed pseudograph. A linear
transformation is defined for the task of mapping the weights
of the three dimensional system onto a two dimensional
one where the Oregonator’s pseudograph is isomorphic to
Brusselator’s.
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I. INTRODUCTION

The Belousov-Zhabotinsky (BZ) reaction, namely the
decomposition of organic acid by bromate ions in acid
solutions containing metallic catalyst, is by far the most in-
vestigated oscillatory chemical reaction, capable of display
interesting complex behavior like mixed mode oscillations
or, for specific regions of reactant concentrations, chaos.

The first reaction mechanism that showed sustained
oscillations, as in the BZ reaction, was the Brusselator
(Prigogine and Lefever, 1968). The Brusselator is formed
by 6 chemical species and 4 elementary reactions. Later
on, in 1972, a second reaction mechanism ( called FKN
mechanism because researchers names Field, Koros and
Noyes) with more than 10 elementary reactions was pro-
posed to explain the observed dynamical behavior in the
BZ reaction showing a good qualitative agreement (Noyes
et al., 1972). In 1974, the same research group reduce the
FKN mechanism to a 5 elementary reactions and 7 chemical
species preserving the richness of dynamical behavior (Field
and Noyes, 1974). This mechanism was named Oregonator.
After these efforts, in 2001, a reaction mechanism with
more than 40 elementary reactions of the BZ reaction was
reported (Hegedus et al., 2001).

Along decades both mechanisms (Brusselator and Oreg-
onator) has been subject of rigorous mathematical stud-
ies (sensitivity analysis, bifurcation scenarios, chemical
chaos, conditions for synchronization, etc. (Epstein and
Pojman, 1998)), but a question remains unanswered: What
mathematical property do Brusselator and Oregonator share
that make them display sustained oscillations as in the BZ

reaction? We address this question from a graph theoretic
point of view.

In the next section we define concepts from the chemical
engineering literature. Section III is devoted to explain
well documented approaches intended to classify chemical
reaction networks (CRN) and justify our motivation to
clarify the (mathematical) relation between the Brusselator
and Oregonator reaction mechanism. In section IV by
means of graph theory and the Stoichiometric Network
Analysis (SNA) we show the existence of an isomorphism
between Oregonator and Brusselator pseudographs. Some
conclusions are drawn in section V.

II. CHEMICAL REACTION BACKGROUND

II-A. Definitions of chemical reaction systems

Consider a chemical reaction system of r reactions and
m reacting chemical species represented by:

α1jS1+· · ·+αmjSm
kj→ α′1jS1+· · ·+α′mjSm, j = 1, . . . , r.

where αij ∈ R. Chemical species are represented by
Si, i = 1, . . . , s. The variable denoting chemical concen-
tration for a chemical specie is xi ∈ R̄+ where R̄+ ,
{z ∈ R | zi ≥ 0, l = 1, . . . , n} and R+ , {z ∈ R | zi >
0, l = 1, . . . , n} . The rate constant, kj ∈ R+, j = 1, . . . , r,
encode external factors influencing the velocity of j − th
reaction and the concentrations of chemical species which
are constant throughout the reaction. The stoichiometric
coefficient, nij = α′ij − αij , is the net amount of i − th
chemical specie which is consumed (or produced) in the j−
th reaction. These stoichiometric coefficients are arranged
in the stoichiometric matrix N ∈ Rs×r. The monomials
of the reaction rates, υj(kj , x) = kj

∏m
i=1 x

κij are formed
according to the mass action rate law, where the kinetic
exponents κij encode the molecularity of the i− th specie
in the j− th reaction. These kinetic exponents are arranged
in the kinetic matrix, κ ∈ R̄s×r+ . The ODEs corresponding
to a reaction network are defined as

ẋ = N · υ(k, x), x(0) ≥ 0 (1)
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In general, N does not have maximal row rank. For d =
rank(N), there exist s− d conservation relations

WT ·x = c (2)

with WT ·N = 0 for a W ∈ Rs×(s−d), where c ∈ R+.
A reaction mechanism is “a detailed description of

the pathway leading from the reactants to the products,
including as complete a characterization as possible of
the composition, structure and other properties of reaction
intermediates and transition states (Temkin et al., 1996)”.
Because some chemical species are present in excess, do
not vary on time for practical purposes. These are named
external species (Eiswirth et al., 1991); those who do vary
on time are called internal species. A chemical reaction
network (CRN) is constructed using pseudoreactions, i.e.
those remaining in the reaction mechanism by setting a
∅ for every external specie, leaving the internal ones in-
tact. The linear combination of internal species before and
after the chemical arrow in a CRN are named complexes
(Feinberg, 1987).

Brusselator Oregonator

2X + Y
k1→ 3X Z̃

k′
5→ Ỹ

k′
1→ X̃

k′
3→ 2X̃ + Z̃

∅
k4

GGGGGGBFGGGGGG

k3

X
k2→ Y X̃ + Ỹ

k′
2→ ∅ k

′
4← 2X̃

The associated CRNs for the Brusselator and Oregonator
are depicted above where the internal species for the former
are denoted by X and Y , meanwhile for the latter are X̃, Ỹ
and Z̃. The stoichiometric matrices correponding to the
networks above are:

N =
[

1 −1 −1 1
−1 1 0 0

]

Ñ =

 1 −1 1 −2 0
−1 −1 0 0 1

0 0 1 0 −1


Note that neither of them is rank deficiency, thus no
conservation relations are needed. The monomial vectors
of reaction rates are

υ(k,x) =


k1x

2
1x2

k2x1

k3x1

k4

 , υ̃(k′, x̃) =


k′1 x̃2

k′2 x̃1x̃2

k′3 x̃1

k′4 x̃
2
1

k′5 x̃3


II-B. Stoichiometric network analysis

Stoichiometric Network Analysis (SNA) relies on a de-
composition of the entire CRN in subnetworks. These
subnetworks are the minimal sets of reactions for wich the
corresponding chemical reaction system will admit steady
states.

The key feature of SNA theory is to observe the dynamics
of the system in the reaction rate space, rather than in
the species concentration space. This approach enables to
draw some conclusions about the chemical reaction network
dynamics without specifiying the concentration values or
kinetic parameters at the steady state.

For a chosen set of parameters k, any steady state of the
system must satisfies the condition

N · υ∗(k, x) = 0 (3)

where all the stationary reaction rates belongs to the
intersection of the ker(N) with Rr+, forming a convex
polyhedral cone, Kυ (Clarke, 1980). The unique and min-
imal set of generating vectors spanning Kυ are called
extreme currents, E′is. The extreme currents along this work
were calculated with the program routine FluxAnalyzer
(Klamt, 2002).

Kυ = {υ ∈ R̄r+ |N · υ = 0, υ ≥ 0} (4)
= {ker(N) ∩ R̄r+} (5)

= {
f∑
i=1

jiEi > 0,∀i} (6)

The non-negative entries of the extreme currents denote
subnetworks for which a steady state exists (Clarke, 1980).
The parameters j > 0, are called convex parameters and
quantify the influence of an extreme current on full network
dynamics. The reaction rates can be expressed as a linear
combination of convex parameters as follows:

υ(j) =
f∑
i=1

jiEi (7)

The jacobian matrix, after a map transformation (Clarke,
1980), and the use of eq. 7, can be expressed as

Jac(υ) = Ndiag(υ)κT diag(hi) (8)

⇒ Jac(j) = Ndiag(
f∑
i=1

jiEi)κT diag(hi) (9)

where hi = x−1
i,ss, i = 1, . . . , s is the inverse steady state

concentrations.

III. TWO PREVIOUS APPROACHES

Next, we discuss two most accepted approaches.
1. The Chemical Reaction Network Theory (CNRT) is

a formalism based on a non-negative integer called
deficiency, δ, of a CRN (Feinberg, 1987; Feinberg
and Ellison, 2000). This integer relates the structure of
the network with the existence of (multiple) equilibria
for the corresponding system of ODEs as in (1). The
dynamical information the deficiency provided, can
be summarized as follows1:

1δ is independent of parameter values.
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If δ = 0, then, regardless of the (positive) rate
constants, the set of ODE’s derived from the
network and endowed with mass action kinetics,
cannot admit multiple steady states or sustained
oscillations.
If δ = 1, and the network satisfies some addi-
tional weak conditions, then the Deficiency One
Theory (DOT) (Feinberg, 1987; Feinberg and
Ellison, 2000) can decide whether the network
can or cannot admit multiple steady states.
If δ > 1, under some conditions, the Ad-
vanced Deficiency Theory (ADT) along with its
algorithm (Feinberg, 1987; Feinberg and Elli-
son, 2000), can be applied to decided about
multistationarity of the network.

The mathematical definition of the deficiency is:

δ = n− l − rank(N) (10)

where n is the number of complexes (including the
zero complex, ∅) and l the number of linkage classes.
As noted before, the complexes of a network are
the objects that appear before and after the reaction
arrows, and each one of them must appear only once
in the network. Thus the set of complexes for the
Brusselator network is, {∅, X, Y, 2X + Y, 3X},
then n = 5. For the Oregonator network the set of
complexes is {∅, X̃, Ỹ , Z̃, 2X̃, 2X̃+ Z̃, X̃+ Ỹ },
therefore ñ = 7.
A linkage class, l, is a group of complexes that are
connected by reaction arrows, i.e. the number of sep-
arate “pieces”of which the network is composed. For
example, the Brusselator network is composed by two
linkage classes, the sets of complexes L1 ={2X +
Y, 3X} and L2 ={∅, X, Y }, thus l = 2. Doing
the same with the Oregonator network we have that
l̃ = 2.
Therefore, their deficiencies are δ = 5 − 2 − 2 = 1
for the Brusselator, and δ̃ = 7 − 2 − 3 = 2, for
the Oregonator. Moreover, using the CRNT Tool-
box (Feinberg and Ellison, 2000) both DOT and ADT,
conclude the same for both networks, i.e. “Taken with
mass action kinetics, the network CANNOT admit
multiple steady states or a degenerate steady state
NO MATTER WHAT (POSITIVE) VALUES THE
RATE CONSTANTS MIGHT HAVE ”. Note that
multistationarity does not preclude the possibility for
oscillations to appear (Toth, 1999).

2. SNA can be used to identify those extreme currents
cycles leading to instability. A classification of chemi-
cal oscillators based on certain characteristics of these
cycles has been reported to be fruitfull (Eiswirth
et al., 1991; Clarke, 1980). To perfom this task is
neccesary to draw the entire network diagram, DN ,
where the chemical species are connected by arrows
denoting reactions. The total number of feathers of
an arrow equals the stoichiometric number of that

specie as reactant and the total number of barbs equals
the stoichiometric number of a specie as product in
the correponding reaction. Using those subnetworks
defined by the extreme currents, a current diagram
DC , is drawn in the same fashion. This DC requires
that the sum over all feathers equals the sum over all
barbs for every species in the diagram (see Fig. 1).

Fig. 1. Network diagrams. a) Brusselator, b) Oregonator.

The current cycles are classified depending upon if the
kinetic order (number of feathers) of the exit reaction
(κexit) from the cycle is lower than, equal to, or
higher than the kinetic order of the cycle (κcycle).
Fig. 2 graphically summarize these concepts.

if κexit > κcycle then the current is a weak
current cycle, which is always stable.
if κexit = κcycle the current cycle is termed
critical current cycle (CCC), which can lead to
instability (and possibly to oscillations) depend-
ing in other features of the network.
if κexit < κcycle the network has a strong cycle
(SC) and therefore a source of instability.

Fig. 2. Simple current cycles. a) weak (2,1; κexit = 2, κcycle = 1); b)
critical (1,1); and c) strong (1,2).

Based on this classification is possible to categorize
oscillatory reactions into two majors classes (Eiswirth
et al., 1991):

Category 1. Networks containing a CCC and a
destabilizing exit reaction.
Category 2. Networks whose instability arises
from a SC

Cleary, from Fig. 3, the Brusselator belongs to Cat-
egory 2. On the other hand, because the Oregonator
network contains a CCC and Y is generated in a chain
reaction via at least one intermediate, Z, this oscillator
belongs to a subdivision of Category 1, the so-called
1B.

As we can see these approaches although well document-
ed do not reveal mathematical properties both Brusselator
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Fig. 3. Extreme current network diagrams

and Oregonator reaction mechanisms share. For example,
their deficiencies are δ 6= δ̃. On the other hand, the
mechanistic classification of currrent cycles approach also
shows that both have unrelated mechanistic structure.

IV. A GRAPH THEORY APPROACH

In this section we propose a graph theoretic approach of
CRN based on the information the Jacobian matrix encodes.

IV-A. Brusselator and Oregonator pseudographs

At this point some definitions from graph theory are
necessary. A pseudograph is a graph that have self-loops
and/or multi-arcs (or multi-edges). Because the Jacobian
matrix is not symmetric in general, in terms of graph theory
this means it defines a directed graph, GD. Formally, GD
is an ordered triple (V (GD), A(GD), ψGD

) consisting of a
nonempty set V (GD), of arcs, and an incidence function
ψGD

that associates with each arc of GD an ordered pair
of (not necessarily distinct) vertices of GD. If a is an arc
and u , v are vertices such that ψGD

(a) = (u, v), then a is
said to join u to v; u is the tail of a, and v is its head.

How the arcs are oriented is encoded in the adjacency
(Jacobian) matrix. For instance, let v1, v2, . . . , vν be the
vertices of a directed graph GD. Then, the adjacency matrix
of GD is the ν × ν matrix A=[aji] in which aji is the
number of arcs of GD with tail vj and head vi. With each
arc of GD let there be associated a real number w, called
its weight, i.e. the entries of the Jacobian matrix.

In order to evaluate the equation (8) the extreme currents
for every network are needed (see Section II). For the
Brusselator we have

E1 = (1, 1, 0, 0)T (11)
E2 = (0, 0, 1, 1)T (12)

and for the Oregonator these are

Ẽ1 = (0, 1, 1, 0, 1)T (13)
Ẽ2 = (1, 0, 1, 1, 1)T (14)

Note that the steady state space of both chemical reaction
networks is spanned by two vectors. Using (10) and (11)
without diag(h1, h2), the Jacobian for the Brusselator
looks like

Jac|Brus =
[
j1 − j2 j1
−j1 −j1

]
(15)

In the same way, using (12) and (13), Oregonator’s
Jacobian is

Jac|Oreg =

 −3j̃2 j̃2 − j̃1 0
−j̃1 −j̃1 − j̃2 j̃1 + j̃2
j̃1 + j̃2 0 −j̃1 − j̃2

 (16)

Reacalling graph definitions above and defining chemical
species as vertices, the Brusselator’s pseudograph is depict-
ed in Fig. 4, and Oregonator’s pseudograph in Fig. 5.

Fig. 4. Weighted directed pseudograph for Brusselator

Fig. 5. Weighted directed pseudograph for Oregonator

Evidently the topology of the Brusselator’s graph is em-
bedded in the Oregonator’s graph (see interaction between
species {X,Y } and {X̃, Ỹ }), i. e. both graphs share that
particular structure. But what happen with the weights? Is
there a transformation from the weights in Jac|Oreg to
Jac∗|Oreg whose linear combination of weights (entries)
equals those in Jac|Brus? The answer is yes.

Jac∗|Oreg = T · Jac|Oreg(17)
Jac∗|Oreg · (Jac|Oreg)−1 = T (18)

Because Jac|Oreg is not singular, (Jac|Oreg)−1 exist
but T−1 does not have an inverse because the third row of
zeroes in T .

T =


j̃2
2−j̃2

1−j̃1j̃2

2j̃2(j̃2−2j̃1)

j̃2
2−5j̃1j̃2+j̃2

1

2j̃2(j̃2−2j̃1)

j̃2
2−5j̃1j̃2+j̃2

1

2j̃2(j̃2−2j̃1)
j̃1(j̃1+2j̃2)

2j̃2(j̃2−2j̃1)

j̃1(4j̃2−j̃1)

2j̃2(j̃2−2j̃1)

j̃1(4j̃2−j̃1)

2j̃2(j̃2−2j̃1)

0 0 0


IV-B. Equality between graphs

We now wish to determine whether two graphs are
“equal”. The importance of knowing this equality lies in
the fact that if a graph G1 and G2 are two equal graphs
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which are models of two situations, then there is something
basically similar about the two situations, in this case about
both oscillatory mechanisms.

We refer to two equal graphs as isomorphic graphs. Let
G1 and G2 be two graphs. By an isomorphism from G1

to G2 we mean a one-to-one mapping f : V (G1) →
V (G2) from V (G1) onto V (G2) such that two vertices
v1 and v2 are adjacent in G1 if and only if the vertices
f(v1) and f(v2) are adjacent in G2.

Before proceed, a graph concept that will help us to
reval in an easier way the isomorphism between Brusselator
and Oregonator pseudographs, is the concept of underlaying
graph. The underlaying graph of a directed graph GD is
the graph that results from removing all the designations
of head and tail from the directed edges of GD (Bondy
and Murty, 1976). If there exist bidirected arcs in GD it
is a convention to represent them as a single edge in the
underlaying graph.

The underlaying graphs of both oscillators looks like:

Fig. 6. Underlaying graphs. a) Brusselator, b) Oregonator after transfor-
mation

Clearly from Fig. 6 both graphs are isomorphic. From a
graph theoretic point of view, both mechanism are similar.

V. CONCLUSIONS

We have shown that through a transformation T of the
Oregonator’s Jacobian is possible to obtain the same linear
combination of convex coordinates j̃1, j̃2 as in the Brus-
selator’s Jacobian entries. Using this last Jacobian matrix
as and adjacency matrix of a pseudograph and following
some basic definitions and conventions from graph theory
was possible to show that both underlaying graphs are
isomorphic, that is, even though in both mechanisms are
present distinct chemical species reacting in different ways,
these are equal from a graph theoretic point sense.

This result may shed some light on the relation both
mechanisms could share from a dynamical point of view.
In orden to understand how the network structure and
dynamic behavior are related between the Brusselator and
Oregonator we conjecture that, under some assumptions,
equation 1 can be expressed as a dynamical network (Wang

and Chen, 2003). The state equations of a network with M
nodes are described by

ẋi = f(xi) + c

M∑
j=1

aijΓxj, i = 1, . . . ,M (19)

where xi = (xi1, . . . , xin)T ∈ Rn are the state
variables of node i, the constant c > 0 represents the
coupling strenght, and Γ ∈ Rn×n is a constant 0 − 1
matrix linking coupled variables. The coupling matrix A =
ai,j ∈ RM×M is called the Laplacian matrix, and encode
the coupling configuration of the network; moreover, its
diagonal elements are the negative degree of each node.
On the other hand, meanwhile equation 1 stands for an
isothermic batch reactor, the ODEs for a isothermic open
reactor are (Gavalas, 1968)

ẋi = (1/θ)f(xi) +
r∑

j=1

nijυj(k, x), i = 1, . . . , s (20)

where θ is the holding time of the reactor. At first glance,
equation 20 resembles to 19, meanwhile equation 1 could
be a special case when f : Rs

+ → 0, x 7→ 0. These
ideas and the role of T on the Oregonator ODEs will be
investigated in further studies.
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