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Abstract– In this work, the problem of controlling
a continuos jacketed chemical reactor with temperature
measurements and non-monotonic reaction rate is addressed.
The reactor must operate about a (possibly open-loop
unstable) steady-state where the reaction rate is maximum
with respect to concentration and there is lack of local
observability. The combination of nonlinear constructive
and (PI and inventory) industrial control ideas, in the
light of system characteristics, yields a control scheme
with: (i) linear-decentralized PI volume control, (ii)
linear-decentralized PI cascade temperature control, (iii)
a ratio-type dynamic material-balance concentration
controller driven by the integral actions of the primary
and secondary loops of the temperature controller, and (iv)
easy-to-apply tuning guidelines coupled to a nonlocal IS
stability criterion. The proposed approach is tested with a
representative case example.
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I. Introduction

An important class of chemical and biological reactors
has non-monotonic kinetic rate dependency on concen-
tration, and due to this, exhibit nonlinear behavior, in-
cluding multiplicity, stable and unstable critical points,
limit cycling, and parametric sensitivity [1], [2], [3]. The
reactor must be designed to operate about a (possibly
open-loop unstable) steady-state with maximum reac-
tion rate (i.e. productivity) and lack of local obsevability
[12].
Hitherto, the reactor control problem has been ad-

dressed with a diversity of procedures that lack system-
atization and formal closed-loop stability assesments.
Recently, the problem has been addressed with ap-
proaches that exploit structural (relative degree and
zero dynamics) detectability properties to drawn a
control scheme with (i) a decoupled passive temperature
controller that on-line quickly estimates the reaction
rate and manipulates the jacket temperature, and (ii)
a material balance controller that is driven by the
reaction rate estimate and estimates the unmeasured
concentration by on-line integrating the dynamic mass
balance [10] or by a mass balance in conjunction with an
EKF that speeds up the concentration estimate conver-
gence rate [11]. The last concentration estimator has a
passivated structure in the sense that the heat balance-
based reaction rate estimate is regarded as a virtual

measurement for the EKF concentration estimator.

However the implementation of this control has some
drawbacks for industrial applicability: (i) the control
scheme is considerably more complex and model de-
pendent than the ones (linear PI and ratio controllers)
commonly used in industry, (ii) the volume and jacket
temperature control components are not included, in
the undestanding that the jacket coolant rate is the
actual manipulated variable for temperature control,
and (iii) there is a lack of formal stability assessments
with tractable (i.e., conventional-like) tuning guidelines.
From an industrial reactor control perspective these
drawbacks signify serious complexity, reliability, main-
tenance and cost concerns.

In this work the problem of controlling a continuous
exothermic chemical reactor with non-monotonic reac-
tion rate, using volume and temperature measurements,
about a possibly (open-loop unstable) steady-state with
maximum productivity and lack of local observability
is addressed. We are interested in a robust control
design in the light of a nonlocal inpu-to-state stability
framework. For applicability purposes, we are interested
in a control scheme with: (i) maximum linearity, decen-
tralization and model independency features, and (ii) a
systematic construction procedure.

First, the preceding two-state (concentration-
temperature) dynamics (1a,1b) is augmented with the
ones of the jacket and volume. Then, the temperature
is controlled by means of a linear cascade controller
with conventional-like linear PI loops, and the integral
action of the loops in conjunction with the mass-energy
balances provide an estimate of the reaction rate. Then,
the reaction rate is regarded as a virtual measurement
to draw a concentration estimate from a single state
EKF built accordingly to the dynamic mass balance.
The volume is controlled with a standard-linear PI
controller. The approach is tested with a case example
through simulations.

II. Control Problem

Consider a continuous chemical reactor (depicted in
Fig.1) where an exotermic reaction takes place.
From standard mass and energy conservation argu-
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Figure 1. Jacketed Continuous Stirred Tank Reactor

ments the reactor model is given by :

ċ = −ρ(c, T, p) + qe
V
(ce − c) = fc (1a)

Ṫ = βρ(c, T, p) +
qe
V
(Te − T )− υ(T − Tj) = fT(1b)

Ṫj = αjυ(T − Tj) + αqqj(Tje − Tj) = fj (1c)

V̇ = qe − q = fV (1d)

zc = c, zT = T, zV = V (1e)

yT = T, yj = Tj , yV = V (1f)

Where (υ) {or (αjυ)} is the heat transfer coefficient
divided by the reactor {or cooling system} heat capac-
ity, (β) is the adiabatic temperature rise (i.e., the heat
of reaction divided by the reactor heat capacity), (αq)
is the product of the coolant density and specific heat
capacity divided by the heat capacity of the cooling
system, and (ce) {or Te} is the feed concentration {or
temperature}. The states are the reactant dimensionless
concentration (c) referred to a given value, the reactor
temperature (T ), the jacket temperature (Tj) and the
reactor volume (V ), the control inputs are the input
(qe) and output (q) flows and the coolant entrance
flow (qj), the regulated outputs are the concentration
(c) the temperature (T ) and the volume (V ), the
measured outputs are the volume (V ) and the reactor
(T ) and jacket (Tj) temperatures, the exogenous inputs
are the measured reactor (Te) and jacket (Tje) feed
temperatures, and the concentration (ce) that is not
measured, but a nominal value is known.
The strictly positive scalar function ρ(c, T, p) de-

scribes the non-monotonic kinetic rate dependency on
(c) and (T ), (p) is a parameter vector, and ρ(c, T, p)
has a maximum in the curve:

Ω = {x ∈ X | ρc(c, T, p) := ∂ρ(c, T, p)

∂c
= 0} (2)

implying that the pair (T, p) uniquely determines a con-
centration value c∗ where the reaction rate is maximum,
this is,

c∗ = κ(T, p) 3 ρc[κ(T, p), T, p] = 0

A previuos analysis [11] shows that the related observ-
ability matrix of the linear reactor approximation is

singular in the curve Ω, meaning that the reactor is not
locally instantaneously observable at Ω [4].
Due to conservation principles, second law of ther-

modynamics, and operation constraints the following
inequalities are met:

c−e ≤ ce ≤ 1, T−e ≤ Te ≤ T+e , T−je ≤ Tje ≤ T+je
q−e ≤ qe ≤ q+e , q− ≤ q ≤ q+ =⇒ 0 < c < 1

T−j < Tj < T
+
j , V

− < V < V +

min(T−j , T
−
e ) = T

− < T < T+ = max(T+j , T
+
e )

In vector compact notation, the reactor system (1) is
written as follows

ẋ = f(x,u,d) , x(0) = x0 (3)

y = Cyx , z = Czx

where x is the state, u is the control input, z is the
regulated output, y is the measured output, d is the
exogenous input, and

d =

⎡⎣ Te
Tje
ce

⎤⎦ ∈ D,u =
⎡⎣ qe
q
qj

⎤⎦ ∈ U,x =
⎡⎢⎢⎣
c
T
Tj
V

⎤⎥⎥⎦ ∈ X,
y = [T, Tj , V ]

T ∈ Y, z = [c, T, V ]
T ∈ Z

(y1, y2, y3)
T = Cyx, (z1, z2, z3)

T = Czx

The steady-state operation

f(x̄, ū, d̄) = 0, ȳ = Cyx̄, z̄ = Czx̄

may have multiple steady states x̄ = x̄1, ...x̄ns and
the process design problem is to choose the reactor
dimensions and operation conditions so that x̄ ∈ Ω in
order to obtain maximum productivity.
The control problem consists in given a steady-state

operation (x̄, ū, d̄) = 0, designing a controller that,
driven by measurements y and d, manipulates the
control u to regulate the output z about z̄ with closed-
loop state stability. This is

x0 ∈ X0, ce ∈ Xce , Te ∈ XTe , Tje ∈ XTje =⇒ z → z̄, x→ x̄

meaning stability in a practical sense (admissible-size
disturbances produce admissible-size state and output
deviations).

III. Passivity-based Control design

The application of the nonlinear geometric technique
[13] to our problem yields that: (i) the static SF control
problem is not solvable because there is not relative
degree vector, and (ii) the problem is solvable with
dynamic SF control, with dynamic extension for the
exit flow rate, and relative degree vector= [1, 2, 1]. To
remove the high relative degree obstacle for control
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robustness [5] the control is redesigned by passiva-
tion by backstepping with emphasis in the attainment
of linearity, decentralization and model independency
applicability-oriented features [10].

A. State Feedback Control

Recall the reactor model (1), assume the state (x)
and exogenous inputs (d) are known, regard T ∗j as a
virtual control input, enforce the closed-loop (primary)
regulation dynamics

ėT = −kT eT , ėc = −kcec, ėV = −kV eV (4)

eT = T − T̄ , ec = c− c̄, eV = V − V̄ (5)

combine these equations with (1a,1b,1d) and solve the
resulting equations for (qe, q, T

∗
j ) to obtain the primary

controller

qe = V [−kc(c− c̄) + ρ(c, T, p)]/ (ce − c) (6a)

q = −kV (V − V̄ ) + qe (6b)

T ∗j =
−kT (T − T̄ )− βρ(c, T, p)− qe

V
(Te − T ) + υT

υ
(6c)

Enforce the closed-loop regulation dynamics

ėj = −kjej , ej = Tj − T ∗j (7)

combine this equation with (1c), solve the resulting
equation for qj to obtain the secondary temperature
controller

qj =
Ṫ ∗j − kj(Tj − T ∗j )− αjυ(T − Tj)

αq(Tje − Tj) (8a)

Ṫ ∗j =
1

υ

h
−kT Ṫ − β

³
ρcċ+ ρT Ṫ

´i
−qe
υ

Ã
(Ṫe − Ṫ )V − V̇ (Te − T )

V 2

!
+ Ṫ (8b)

where the last equation follows from the analytic
derivation of (6c). The closed loop behavior of this SF
controller (6,8) constitutes the target to be recovered
with an output feedback (OF) controller.

B. Output Feedback Control

Since the concentration-temperature pair is not lo-
cally observable at the curve Ω, a nonlinear high-gain
Luenberguer observer cannot be employed. Instead an
EKF (9) is employed to obtain a joint concentration-
temperature (ĉ, T̂ ) observation structure [9]. The com-
bination of this EKF with the passivated SF controller
(6,8) yields the OF controller.

.
ĉ = −ρ(ĉ, T̂ , p) + [qe(ce − ĉ)]/yV + σ12

r11
yT − T̂ (9a)

.

T̂ = βρ(ĉ, T̂ , p) + [qe(Te − T̂ )]/yV − υ(T̂ − Tj)
+
σ22

r11
yT − T̂ (9b)

σ̇11 = 2 (−ρc(ĉ, T̂ , p) + qe

yV
)σ11 − ρT (ĉ, T̂ , p)σ12

+q11 − σ212
r11

(9c)

σ̇22 = 2 βρc(ĉ, T̂ , p)σ12 + (βρT (ĉ, T̂ , p)− qe

yV
− υ)σ22

+q22 − σ222
r11

(9d)

σ̇12 = βσρc(ĉ, T̂ , p)11 + [−ρc(ĉ, T̂ , p) + qe

yV
+ βρT (ĉ, T̂ , p)

− qe

yV
− υ]σ12 − ρT (ĉ, T̂ , p)σ22 − σ12σ22

r11
+ q21 (9e)

qe = yV (−kc(ĉ− c̄)) + ρ(ĉ, T̂ , p)/ (ce − ĉ) (10a)

q = −kV (yV − V̄ ) + qe (10b)

Tj∗ =
−kT (yT − T̄ )− βρ(ĉ, T̂ , p)− qe

V
(Te − yT ) + υyT

υ
(10c)

qj =
Ṫ ∗j + (−kj(yj − T ∗j )− αjυ(yT − yj)

αq(Tje − yj)
(10d)

Ṫ ∗j =
1

υ
−kT Ṫ − β ρcċ+ ρT Ṫ

− qe
υ

(Ṫe − Ṫ )V − V̇ (Te − T )
V 2

+ Ṫ (10e)

where ρT (c, T, p) :=
∂ρ(c,T,p)

∂T .
As it can be seen, the OF controller consists in 5

ordinary differential equations (ODE’s) and 5 algebraic
equations (AE’s), the construction of the controller
needs the reaction rate function ρ(c, T, p), its partial
derivatives respect to T and c, its parameter vector p,
as well as the heat transfer coefficient υ.

IV. Redesigned Control

From an industrial reactor control perspective the OF
controller (9,10) is very complex and model dependent
in relation to the industrial standard linear (P or
PI) controllers. Thus in this section the controller
is redesigned with an applicability-oriented linearity,
decentralization and model independence features.

A. State Feedback Control

Let us rewrite the reactor model (1) in a parametric
form [10] with a static aT , aj , aV and a synthetic
bT , bj , bV load disturbances

Ṫ = aTTj + bT , yT = T (11a)

Ṫj = ajqj + bj , yj = Tj (11b)

V̇ = aV q + bV , yV = V (11c)

bT = βT (c, T, Tj , V, Te, qe) (12a)

bj = βj(T, Tj , Tje, qj) (12b)

bV = βV (qe) (12c)
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ċ = −ρ(c, T, p) + qe
V
(ce − c), zc = c (13)

where aT = ῡ, aj = ᾱj(T̄je − T̄j), aV = −1
ῡ, ᾱj , T̄je, T̄j are approximations of the steady-state
values of each variable or parameter, and

βT = βρ(c, T, p) + (qe/V )(Te − T )− υ(T − Tj)− aTTj
βj = υj(T − Tj) + qjαj(Tje − Tj)− ajqj , βV = qe

This representation of the reactor has a linear and de-
centralized dynamical component (11), and interactive
non linear dynamical (13) and static (12) components.
Assume the the load disturbances are known, enforce
the closed-loop dynamics (4) to the reactor parametric
form (11) obtaining

q = (−kV (V − V̄ )− bV )/(aV ) (14a)

Tj∗ = (−kT (T − T̄ )− bT )/(aT ) (14b)

qj = (Ṫ ∗j − kj(Tj − Tj∗)− bj)/(aj) (14c)

This passive SF controller constitutes a linear and
reduced model dependency version of the cascade tem-
perature and volume controllers (6), but still needs an
extra high model dependent equation that follows from
the analytic derivation of (14b)

Ṫ ∗j = ι(Ṫ , ḃT ) (15)

Enforce the closed-loop dynamics (7) to the reactor
concentration component (13) and obtain the concen-
tration SF controller.

qe =
yV (−kc(c− c̄) + ρ(c, T, p))

(ce − c) (16)

B. Output-Feedback Control

The linear and decentralized dynamical component
(11) of the reactor can be expressed as follows:

ẋι = aιuι + bι, yι = xι, ι = V, T, j

uV = q, uT = Tj , uj = qj

Each synthetic load is determined by the input-output
pair bι = ẋι − aιuι, so it can be quickly reconstructed
by a set of reduced order observers [8]

χ̇ι = −ωιχι − ω2ι yι − ωιaιuι, χι(0) = −ωιyι0(17)
b̂ι = χι + ωιyι

ι = V, T, j

Combining this decentralized set of filters with the SF
temperature and volume controllers (6) a set of linear
and decentralized OF controllers is obtained:

χ̇ι = −ωιχι − ω2ι yι − ωιaιuι, χι(0) = −ωιyι0(18a)
uι =

·
ȳι − kι(yι − ȳι)− χι − ωιyι / (aι) (18b)

where in classical PI form are written as follows:

uι =

·
ȳι
aι
− κι

∙
(yι − ȳι) + 1

τι

Z t

0

(yι(σ)− ȳι(σ)) dσ
¸

where the proportional and integral gains are functions
of estimation ωι and control kι gains.

κι = (ωι + kι) /aι, τι = ω−1ι + k−1ι

Once the synthetic loads are estimated the derivative of
the virtual set point Ṫ ∗j follows from the time derivative
of (14b) and the sustitution of bT by its estimate b̂T

Ṫ ∗j = −kTTj −
kT
aT

χT − kTωT
aT

T (19)

Also from b̂T and b̂j the instantaneous value of
the heat exchange coefficient (υ̂) and the reaction
generation rate (r̂) can be recovered by solving two
algebraic equations:

υ̂ =
χj + ωjTj − (αqqj(Tje − Tj) + ajqj) /(T − Tj)

αj
(20a)

r̂ =
χT + ωT yT − qe

V
(Te − T ) + υ̂(T − Tj) + aT Tj

β
(20b)

In a way that is analogous to the design of robust non-
linear controllers via passivation by backstepping using
a virtual control to overcome the high relative degree
(say two) obstacle [5], regard the reaction rate estimate
r̂ (20b) as a virtual measurement for the concentration
dynamics [11], according to the expressions

.
c = −r̂ + qe(ce − c)/V, r̂ = ρ(c, T, p)

and the corresponding EKF is
.
ĉ = −r̂ + qe

V
(ce − ĉ) + sρc(ĉ, T̂ , p) r̂ − ρ(ĉ, T̂ , p) (21a)

ṡ = −2sqe/V + ν − ρ2c(ĉ, T̂ , p)s
2, s(0) = s0 (21b)

s = σ/qr, ν = qc/qr

where qc (or qr) is the model (or measurement) noise
intensity, σ is the concentration error covariance, and g
is the estimator gain. The variable s and the intensity
noise quotient ν have been introduced to have ν as the
single tuning parameter. It must be pointed out that
the gain g vanishes at the curve Ω (ρc = 0) and is
positive (or negative) in the iso(or anti)tonic branch of
the reaction rate, where ρc > (or <)0, this is

g(c∗, T̂ , p) = 0, g(c < c∗, T̂ , p) < 0
g(c > c∗, T̂ , p) > 0, c∗ = κ(T, p)

These vanishing-gain switching properties implies
that the estimator injection ceases as the reactor
approaches the curve Ω that lacks local observability
or, equivalently, the estimator behaves in open-loop
regime. It has to been mentioned that in spite of the
needing of the reaction rate function and its partial
derivative respect to concentration in fact the model
dependency is minimal because the EKF estimator only
needs a tendency-like approximation of the reaction
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rate function. The combination of the concentration SF
controller (16) and EKF (21) with the reaction rate and
heat transfer coefficient estimators (20), and the set of
linear controllers (18) yields the OF controller
Temperature

χ̇T = −ωTχT − ω2T yT − ωT aT T
∗
j (22a)

Tj∗ = −kT (yT − T̄ )− χT − ωT yT / (aT ) (22b)

χ̇j = −ωjχj − ω2j yj − ωjajqj (22c)

qj = Ṫ ∗j − kj(yj − Tj∗)− χj − ωjyj / (aj) (22d)

Ṫ ∗j = −kTTj − kT

aT
χT − kTωT

aT
T (22e)

Volume

χ̇V = −ωV χV − ω2V yV − ωV aV q (23a)

q = −kV (yV − V̄ )− χV − ωV yV / (aV ) (23b)

Concentration

qe =
yV (−kc(ĉ− c̄) + r̂)

(ce − ĉ)
(24a)

r̂ = [χT + ωT yT − qe

V
(Te − yT ) + 1

αj
(χj +

ωjyj − αqqj(Tje − yj) + ajqj) + aT yj ]/β (24b)
.
ĉ = −r̂ + qe

yV
(ce − ĉ) + sρc(ĉ, T, p) [r̂ − ρ(ĉ, T, p)] (24c)

ṡ = −2sqe/yV + ν − ρ2c(ĉ, T, p)s
2 (24d)

As it can be seen this redesigned OF controller
consists in 5 ODE’s and 6 AE’s and resembles in-
dustrial conventional temperature and volume control
components. An additional algebraic equation (24b)
is needed to recover the instantaneous value of the
reaction rate that is used in the control and estimation
of concentration. Notice also that for the concentration
estimate is only needed a tendency-like approximation
of the reaction rate function that acts as a accelerator of
the concentration estimation with respect the open loop
regime [10], meaning that there is a model independency
not found in the OF controller (9,10).

C. Closed loop stability
The application of the OF controller (22,23,24) to the

chemical reactor (1) yields the closed-loop dynamics

ėc = −kcec + qc(c, T, Tj , V, Te, Tje, ce, s, bT , bj ; ²T , ²j , ²c)
(25a)

ėT = −kT eT + qT (T, bT ; ²T ) (25b)

ėj = −kjej + qj(T, Tj , bT , bj ; ²T , ²j) (25c)

ėV = −kV eV + qV (V, bV ; ²V ) (25d)

²̇T = −ωT ²T + (T̈ − aT Ṫj) (26a)

²̇j = −ωj²j + (T̈j − aj q̇j) (26b)

²̇V = −ωV ²V + (V̈ − aV q̇) (26c)

²̇c = −kc²c − sρc(ĉ, T ) [r̂ − ρ(ĉ, T )] (26d)

ṡ =
−2s
ce − ĉ

[−kc(ec − ²c) + r̂] + ν − s2ρc(ĉ, T ) (26e)

where: ec = c − c̄, eT = T − T̄ , eV = V − V̄ , ej = Tj − T ∗j , ²c =
c− ĉ, ²T = bT − b̂T , ²j = bj − b̂j , ²V = bV − b̂V .
Subsistem (25) without estimation errors (²i = 0) con-
stitutes the reactor closed-loop dynamics with SF con-
trol (6,8), and subsystem (26) represents the IS-stable

TABLE I

Steady states for operation conditions

k = e25, γ = 1e4,σ = 3, υ = ce = αq = 1, Te = Tj = 370
β = 200,αj = 10, qe = q = 0.989, qj = 8.685, Tje = 293

steady states SE U SI
concentration [mol/L] 0.998 0.333 0.017
temperature [K] 345.54 436.07 479.07

jacket temperature [K] 321.12 369.57 392.58
volume [L] 1.0 1.0 1.0

local condition stable unstable stable

estimator dynamics in closed-loop mode. The closed-
loop system is the interconnection of quickly varying
error dynamics (26a-26c), slowly varying estimation er-
ror dynamics (26d,26e), and slow closed-loop dynamics
(25). In the case of monotonic kinetics, the closed-loop
stability conditions can be drawn by applying standard
small-gain [10] or direct Lyapunov methods [14]. Thus,
the application of the same approach can be applied
to asses the closed-loop stability of our system (25-26),
with one important consideration: the non monotonic
feature of the reactor and the presence of the Ricatti
equation (26e). The formal stability proof is underway.

V. Application example

The representative example was built recalling the
non-monotonic kinetic dependency form from a previ-
ously reported experimental study for a catalytic reactor
where carbon monoxide was burned to yield carbon
dioxide [6], and modify it to draw a case where the
unstable steady state coincided with the point that
yielded the maximum reaction rate at a prescribed
temperature. The non-monotonic kinetics is given by:

ρ(c, T, p) = (cke−(
γ
T ))/ (1 + σc)2 [mol/L ·min] (27)

For the operation conditions listed in Table I, there are
three steady-states, two stable ones SI (ignition) and
SE (extinction) and one unstable (U).
To represent a realistic situation, the control signals

are constrained heuristically to [0,4],[0,4] and [0,20] for
q, qe and qj respectively. The gains were choosed to
achieve a sufficient dynamic separation as: ωj = 20,
kj = 6, ωT = 50, kT = 3, ωV = 50, kV = 3,
ν = 1 and kc = 2. The initial conditions were x(0) =
[0.2, 430, 365, 0.9]T , ĉ(0) = 0.25,σ(0) = 0,χj(0) =
−ωjTj(0),χT (0) = −ωTT (0),χV (0) = −ωV V (0). The
simulation results can be seen in Fig. 2. Other sim-
ulation was done to compare the original (9,10) and
redisegnided PI-inventory (22,24,23) OF controllers be-
havior. The same control gains were used in both
controllers. For the EKF the next values were taken
from [6] where a minimum least-squares criterion was
used with experimental data from a catalytic reactor:
q11 = 7.590 × 10−3, q22 = 6.006 × 10−7, q21 = 0, r11 =
2.376 × 10−7 and additionally σnn(0) = 0, T̂ (0) = 440.
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It can be noticed that, in this case, the redesigned
PI-inventory controller has the same performance with
respect the more complex (and model dependent) OF
passive controller. A last simulation was made to com-
pare the robustness of both approaches. The reaction
rate was modified with the next typical parameter errors
[10]: −9.5% in the pre-exponential factor k, −0.5% in
the adsorption constant σ and −6.6% in the activation
energy γ. The results show that the redesigned PI-
inventory controller has a more robust behavior with
respect to the OF passive controller.
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Figure 2. Closed-loop behavior with PI-inventory controller
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Figure 3. Closed-loop behavior with (9,10) nonlinear passivated
OF (..) and (22,23,24) PI-inventory OF (-) control.

VI. Conclusions

The problem of controlling a continuos jacketed chem-
ical reactor with temperature measurements and non-
monotonic reaction rate was addressed, considerying a
complete model with four states. The combination of
nonlinear constructive and (PI, and inventory) indus-
trial control approaches yielded a control scheme with
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Figure 4. Closed-loop robust behavior with (9,10) nonlinear
passivated OF (..) and (22,23,24) PI-inventory OF (-) control.

linear-decentralized PI cascade temperature and volume
controls, and a ratio-type dynamic material-balance
concentration controller driven by the integral actions
of the primary and secondary loops of the temperature
controller and an EKF to recover the concentration. The
proposed linear and decentralized approach was tested
with a representative case example through numerical
simulations in a worst-case situation where the open-
loop unstable steady-state coincide with the maximum
reaction rate implying lack of local observability, show-
ing a similar and more robust performance with respect
the more complex OF passive controller.
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