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Abstract— A class of mathematical models for biochemical proposed (lbarra, Moreno and Espinosa, 2004), (Moreno
processes is analyzed with respect to its global observability and Dochain, 2005), (Schaum, Moreno and Vargas, 2005)
properties. It is shown that, for non-monotonic reaction ging hasic definitions of indistinguishability and observ
kinetics, there exist not identical indistinguishable trajectories bilitv. Thi thod It it tural imolicaiod
and thus the system model is not globally observable in this ability. |.s.r.ne od resufts ‘_'"S a quite natural Imp |§:a n
case. However, it is shown that the system is detectable, sincethese definitions and permits a deep understanding of the
indistinguishable trajectories are convergent. Despite of this dynamical nature determining the observability propertie
fact, several observer design methods, as for example the of the system. Using this method the dynamics of a class
High-Gain method, cannot be used to design an observer for st pig\chemical processes is analyzed. These processes ar

this system. In particular, it is shown in this paper that for . . L .
a general class of Reduced Order Observers it is impossible determined by the underlying kinetics law. The analysis is

to select an output injection, so that the observer converges Performed for two basic types of such kinetics found in
for all (distinguishable) trajectories, when the kinetics is not process engineering. The observability analysis resalts i
monotone. This result is surprising due to the detectability of the existence of indistinguishable trajectories, and thes

the system. loss of global observability, and finishes with the demon-

Key Words: Biochemical process models, Global Observability stration of the _system’s deteptability. This shows that. a
and Detectability, Reduced Order Observes. necessary condition for the existence of globally conveygi
observers is satisfied, so that in principle an observetsexis

that converges for every system'’s trajectory. Despite isf th
A. General aspects of the work it is shown in this paper that there does not exist a Reduced
The importance of observers in technical applications halrder Observer (ROO) converging for all (distinguishable)
increased in the last years. Nevertheless the design of dbajectories in the case of a non-monotonic kinetics of
servers for nonlinear systems is a challenging task regpiri Haldane type, although it exists in the case of a monotonic
in general a high analytic effort. The possibility of design  kinetics. Thus the existence of ROOs depends heavily on the
an observer is influenced by the observability properties @§pe of reaction kinetics determining the process dynamics
the system. Loosely speaking, observability represems th
possibility to distinguish all system states by knowledge oB- State-of-the-Art
the input and output signals. If the system’s trajectories a As mentioned above, the considered model class
not globally distinguishable the system is not observable. describes in a general way the dynamical behavior of
this case a necessary condition for the convergence of aome (bio)chemical processes frequently found in process
observer is the system’s detectability, i.e. the convezgenengineering. The main inspiration of the presented work
of all indistinguishable trajectories. Thus the first step iis a biological reactor for the treatment of industrial veast
the design of an observer has to be the analysis of theater, actually investigated at the Instituto de Ingéni@f
observability properties. For nonlinear systems a coreplethe Universidad Nacional AGhoma de Mxico (UNAM)
analysis of the observability using conventional method¢Moreno and Buitron, 2002). The model has been used
such as the Kalman condition or the observability map, i®r different controller designs. Due to the fact, that the
often hard to obtain. Moreover, if these conditions are natonsidered concentration of the substrate is not measyrabl
satisfied it is not possible to assert the non observabilithe applicability of different observer design methods has
of the system since they are only sufficient. Furthermordyeen analyzed in former works (see e.g. (Vargas and
they are of local character and do not permit an analysidoreno, 1999), (Vargas, 1999)). The design of observers
of the system’s detectability. Recently a method to anturned out to be more difficult than expected and thus a
alyze the global observability and detectability has beeprofound analysis of the dynamical nature of the occurring
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problems is searched. This aspect has been treated Nlonod, it can be represented as follows:
following works. Therein the above mentioned method to 113105
analyze the system’s detectability has been used (Schaum, par(S) = Kj\ﬁ) 5 (2)
Moreno and Vargas, 2005), (Schaum, 2006)). This leads o
to a deeper understanding of the structural problenf¥ith kinetic parametergi\o and K. A further possibility
obstructing the design of some observers. In the ca®diven by a non-monotonic Haldane kinetics
of a Reduced Order Observer (ROO) it is possible, to LroS

show explicitly the influence of the existence of a set of pu(S) = oK
indistinguishable trajectories (and thus the loss of dloba
observability) on the observer error dynamics. Thus th@ith (positive) kinetic parametergo, K, and K;. Note
presented analysis offers a deeper understanding of titat, due to the non-monotonicity, the kinetics is not in-
influences of the observability properties on the design dective. It reaches its maximum o, < po at Smas =
observers for the presented model class and is a progreé&sK;. The dependence on the substrate concentration
in the Comprehension of the dynamica| interconnection@r the Haldane kinetics is illustrated in Flg 1. For funthe
eventually complicating the direct application of certain
methods.

®)

N

The paper is organized as follows. In section Il the % 2
class of process models, as well as the corresponding =
observability and detectability analysis, is presentelis T s

is followed in section Il by the analysis of the applicatyili <) 1
. . (@]
of ROOs. Section IV includes some further remarks and o
implications and closes the presented analysis. 5
[}
jo
n

Il. OBSERVABILITY AND DETECTABILITY 00 50 100 150

Substrate concentratio$i

] ) _ Figure. 1. Specific biomass growth rate determined by a Haldane
In the sequel the considered class of (bio)chemic@netic ;.;;(5) in dependence on the substrate concentrasion
process models is introduced. We restrict the analysis to
a model recently developed for a biochemical process fetudies and deduction of the special model for the bioldgica
the treatment of industrial waste water. Note that mangrocess for the treatment of waste water see (Henze, 1986),

(bio)chemical processes are dynamically similar to the on@loreno and Buitron, 2002), (Vargas and Moreno, 1999)
studied here and thus the presented analysis is valid (wWilhd references therein.

some restrictions) for a wide class of nonlinear systems
occurring in process engineering. In the following all paB- Analysis of the observability properties
rameters are assumed to be known and further constantin the sequel a short deduction of the system’s observ-
System’s equations are: ability properties is presented. By a classical obseritgbil
) analysis using the observability map= [X, L;X]" one
X =p(S)X — (Ka+u)X immediately can see, that the model is observable in the

A. Presentation of the mathematical model

S =—Cyu(S)X + u(Si, — S) (1) case of a monotonic kinetics, like Monod. For a Haldane
y =X, kinetics, due to the non-injective behavior pfsS), the
observability map becomes non-injective exceptSat=
with the non-negative system’s staten(t) = Simaz, and thus can not be used to analyze the observability
[(X(¢t) S@#)" € R2 and the initial condition properties. On the other hand, a linearization of this syste
n(0) = [Xo So|T, where X represents the biomassleads to a Kalman-Observability matrix which is singular

(concentration) used to degrade the toxic substratg S = S,,,.. Thus the only point where, by use of
(concentration)S. The trivial case of a reactor without the observability map observability can be assured, is not
biomass & = 0) will be excluded. The input is given by locally observable! This demonstrates a certain paradox
the dilution rate (i.e. inflow divided by the reactor volume)between these two definitions, whose clarification is not the
and represented by. The model parameters are given byissue of this paper.

the biomass mortality raté&’; and the reciprocal biomass In order to obtain a global analysis of the observability
yield coefficient C;, both constant and positive. The properties, by necessary and sufficient conditions, a ndetho
substrate concentration in the inflow is given By, > 0. is used which has been proposed in some previous works
The specific biomass growth ratgS) can depend on the (see e.g. (Ibarra, Moreno and Espinosa, 2004), (Moreno
substrate concentration in different ways. If the dynamicand Dochain, 2005), (Schaum, Moreno and Vargas, 2005)).
of the reactor is determined by a monotonic kinetics lik& his method uses direct implications of the basic defingion
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of indistinguishability and observability as e.g. given inlnput can be obtained fron’X ") = ¢ with n = 2 and
(Nijmeier and van der Schaft, 1990). Two trajectories areorresponds to

called to be indistinguishable, if they produce the same C(SVX (1 (S (S

output signal while guided by the same input. A system then " =— 5 1#(5) (l;( +€2) /HS( S) 5

is called observable, if all indistinguishable trajectsriare (S + e2)(Sin — 5 — &) = p/(5)(Sin — )

identical, i.e. the internal states are exactly the samalfor ()
time. This property is very strong. One can introduce a less _ Cru(S) XK K;(25 + €3)
restrictive property by defining detectability as the canve (KsK; — D)[(Sin — S)(2S + €2) + S2K K]

gence tq the same trajectory of gll indistinguishqble paﬁrs As one can see from the algebraic constraintSom (6),
trajectories. Finally a Bad Input is defined as an input shgnsrat is not possible forS to converge to zero on the manifold
producing not identical indistinguishable trajectorig#bus Thus u(S(t)) > 0V ¢ € R, holds. FurtherX > 0

the existence of Bad Inputs implies the non-observabilityor all ¢ € R,\{oc}. Noting that the only zero of (7) is
of a dynamical system. From this considerations one may " '

) . . %y = —25 which contradicts (5) one can see, that for all
understand the following analysis as the determination inetics with parameters,, K, satisfying K. K; > 1 and
the observability properties of (1) by the determinatiomlof Sin > Sy the input signa{l is positive and thus feasible, as
indistinguishable trajectories and their dynamical bévav .~ _ """ ’

. S is naturally bounded by < S;,,, whenS, < S;,,. At this
(see €.9. (Ibarra, Moreno _and Esp_lnosa, .2004)' (Moreno a gint of the analysis one can summarize that the system can
Dochain, 2005) for more information). First of all an exac

o xcite not identical indistinguishable trajectories gddy
copy of the system is introduced bad input signals determined by (7). Thus (1) is not globally
¢ —(0)€ — (Kq+ u)é obseryable. To see if (1) is detec_table one has to prove, that
& = — Cap(0)e + ul(Sim — o) @) all pairs of |n.d|st|ngu.|s.hable trajectori€s), ¢) converge.
18 o To analyze this condition one has to analyze the stability
P =E, of the dynamics of the extended state on the manifb|d

; i.e. the dynamics ofn, e]” € ¥ C =. From the definition
with the system stat&(t) = [¢(¢) o(t)]7 € R? and y fn, €]

the initial state¢(0) = T Further, the state error of W (6) one can see, that = 0 on V. This dynamics
¢(0) %0 o] thus corresponds in principle to the following differefitia

is defined bye := ¢ — n. A necessary and sufficient I .
condition for the indistinguishability of a paitn,¢) of ~algebraic system
Frajectories is that the two outpufs ,a”fjﬁ are identical, X =X (u(S) — Kq — u*)
ie. y(t) = p(t) = e = 0. If this is fulfilled, then 6 — — ute ®)
XM (t) = €M)(t), Vn € Ny, t € Ry. Forn = 0 this 27 2
equivalence reads obviously = £. Forn = 1 the equality S _1 <_€2 +y/€+ 4KSK4> _
can be reformulated as 2 S
W(S(t) + ea(t)) = u(S(D)) ) Thus, in order to analyze the detectability of (1), one has

to analyze the asymptotic stability of the gét0)” € W
Thus the indistinguishable trajectories are restrictecato defined bye, = 0. Note that (8) is actually a planar
submanifold¥ C = := R3 x R?, defined in the extended system, as the Bad Input (7) only depends.®on e, and
state space of the system state and the error, which $e2). Under the above mentioned conditions, assuring the
determined by the following set of trajectories positivity of the Bad Input signal, the global stability of
_ ) . B e = 0 in ¥ can be assured and the detectability of (1)
Ui={(n,e) € E:= Ry xR7ler = 0& pu(m2 + €2) = p(m2)}  thus is implied. This result is formalized in the following
(6) proposition.

={(n,e) €ZElee =0& S = % (—62 +1/€3+ 4K5Ki) }.  Proposition 1: Consider the dynamics (1) on the differ-
entiable manifoldV of indistinguishable trajectories defined

One directly notices, that for a monotonic kinetig$S) by (6). Further suppose thdt,K; > 1 and the substrate
as e.g. corresponding to Monod (2) this set is given by atloncentration in the inflows;,, > S,... and constant, so
trajectories(n, €) = (n,0), as the equivalence qf,;(S) = that the Bad Input (7) is positive. Thet(t) converges
pnrr (S + €) directly implies e; = 0. Further one can asymptotically toe; = 0V [Xo Sp 0 e20]” € U. As further
see, that for a non-monotonic kinetics like Haldane (33; = 0 on ¥, € = 0 is asymptotically stable o, i.e.
there exist in principlec; # 0 satisfying condition (5). system (1) is detectable.
For Bad Inputs and initial conditions of the extended state
vector (n,¢) on the manifold¥ the trajectories will stay PROOF To proof the asymptotic stability ofs = 0, i.e.
indistinguishable for all times. Note that the existence oits attractiveness and stability in the senselghpunoy
the indistinguishable trajectories requires the existeot we make use of the well-known theorem 8bincate-
a positive Bad Input to be physically realizable. The BadBendixson First note, that due to the positiveness
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of the Bad Input (7) under the above assumptionthe observer states. To illustrate the basic idea condider t
le2(t)] < Jeao| V t € Ry, ie. e is not increasing. following system

Further note that the dynamics (8) has at most two .

equilibrium points located on theX-axis. Thus if the n=f(nyu)

trajectory converges themy(t) — 0, i.e. e; = 0 is y=Ff(ny,u) + f3(y,u),

attractive. Asey is non-increasing it is further stable. i initial condition n(0) = n, € £ C R* andy(0) =
Further from (8) one can directly see that if the Ba € R™ and all f,, i = 1,2,3 assumed to fulfill a

Input w* is integrally unbounded asymptotic Stab'“tyLlpschltz condition. One assumes the time derivative of the

is warranted. Now, if [[[X(t) ,62(73)]TH — 00, then  ouputy to be measurable and defines the new fictive output
FJk>0 : u'(t) >k VteRy,, ie. the input is integrally

unbounded and thugim e»(t) = 0. A limit cycle cannot v=y— fi3(y.u) = f2(n.y,u).

exist ase(t) is not Increasmg Thus; — 0 holds under Thus one can restrict the system representation to the
the above assumptions assuring the positivity of the Ba@llowing

Input and the convergence of all pairs of indistinguishable )

trajectories to one trajectory is guaranteed. Thus (1) is n=fi1(n,y,u)

detectablel v =Ff2(n,y,u),

Figure 2 illustrates the behavior of |nd|st|ngU|shablqand can define afn —m) dimensional observer according
trajectories of substrate concentrations &n C Z in _
this case. One can see, that the substrate concentrations n=f1(ny,u)+ Ky)y—79] 9)

6’ :.fQ(,f]7yau)7

with initial state)(0) = 7,. In practical applications the
time derivative of the outpuy in ~ has to be eliminated,

as, in general, it can only be approximatively determined.
50 \ This can be realized in some cases by a state transformation.
B Thus remark that (9) can be rewritten as

;;:::::i::::::’ ’h :fl(ﬁvyvu) +K(y)|:y - fB(yau) _.f2(f]ay7u)i|'
0 v

Now define the new state := 7)—®(y), with aC'—function
®(y) to be defined in the following. The time derivative of
& Is governed by

E=f1(z+ 0(y)y,u) + K(y) |9~ faly,u)—  (10)

converge to the maximum argument of the specific growth B B 00(y) .
rate(S) = u(o). As S can not converge to zero oh this Faly,u)(z + (I)(y))} oy

is the only possibility for the indistinguishable trajecés Thus the influence of is eliminated if aqgéy) _ K(y),

to converge to each other. such that the original state has to be reconstructed cor-
IIl. EXISTENCE OFREDUCED ORDER OBSERVERS respondingr) = z + ®(y). To apply this method it has
to be assured at least that the transformed observer state
In the sequel the existence of a Reduced Order Observerconverges to the transformed original state which is
(ROO) for system (1) is analyzed. First of all a shorigquivalent to the convergence of the observer correspgndin
introduction to the basic idea of the design method is giverg (9). This is very important as it represents a fundamental
fo”OWed by the |”Ustrat|0n that the eX|Stence Of ROO&:Ondmon for the app“cab'“ty Of th|s Strategy
for this model class depends heavily on the type of thg the following the applicability of this approach to the
underlying kinetics. model class is analyzed. The main result is that for a non-
monotonic kinetics of Haldane type due to the existence of
a submanifold of indistinguishable trajectori@sc = it is
Reduced Order Observers have first been introduced gt possible to design the observer gain in such a way, that
Luenberger(see (Luenberger, 1971)). The general idea ir all initial states and inputs all distinguishable t@m@ies
to reduce the order of the observer fornadimensional converge. Thus for a non-monotonic Haldane type kinetics
system with m-dimensional output signal tdn — m) no ROO exist for (1). This shows the dependence of
observer states. The designed observer thus does not h#twe existence on the kinetics and thus the observability
to reconstruct measured data, i.e. there is no redundancygroperties of the regarded process.

B100 ¢

Substrate concentrati

0 200 400

Figure. 2. Behavior of indistinguishable trajectories of the substrat
concentrationS ando = S + e2.

A. General Introduction
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B. Existence of ROO for the model class =
In the following the existence of ROOs for the model ® 60 +1 | -1
class defined by (1) is analyzed. Therefore assume that the *qc';
time derivative of the outpuf\, i.e. X is known at each e 4o
time-instant. Thus one can construct the output X + 8
(u+ Kq)X = p(S)X. A ROO thus has to be designed for @
the substrate concentration and has the form g 20 \
(2]
R R . 2 -1 | +1
8=~ Cru(8)X +u(Sin — §) + K(X)(v—4) (A1) 3

- —50 0 50 100
¥ =n(9)X, Substrate erroe,

according to the introductory explanations to this sectiorkigure. 4. Phase plane of the error dynamics. Segmentation in 4
Defining the observation error as= S—S and considering regions of different sign by thélaldanekinetic for K > 0. The
v = u(S)X, the error dynamics can be written as curve represents the phase-pairs for whigly) = 1.(S + €) and

thus corresponds the manifoid.
é=—(u(S) — (S +€)K(X)X — ue. (12)

In the sequel assume that the kinetjosS) is of Haldane

type. Sign and value of the first term in (11) are influence
by the initial error, because of the non-monotonicity. Th<?_|
difference between observed and real growing facto

bserver error trajectories. Thus there does not exist a
OO for (1) determined by a non-monotonic kinetics of
raldane type. The fundamental idea of the proof is to
. __ , derive necessary conditions for the convergence and to
le. A(Se) = (“(S + o) - “(S)) vanishes on the show that they can not be satisfied in some special cases.

submanifold of indistinguishable trajectorigs As e; =0 e . :
is considered, this manifold can be represented by a‘“herefore a case distinction of the sign §1.X) is used.

pairs (e, Sy) fulfiling Sy = 1( — ¢ + Ve + 4K, K;).

There exist three possibilities fixing > 0 as illustrated T roPosition 2:independently on the observer gain

K(X) € R of the ROO (11) there exist initial conditions
[So o]” € Ry xR as well asu : R, — R such that the

8 observation erroe(t) = S(t) — S(¢) with dynamics accord-
B ing to (12) and (1) can not converge for all distinguishable
6A A 1 trajectories, i.e. trajectorieBX (¢) S(t) 0 €(t)]T € =\ V.
B (0% Thus no ROO exist for (1).

PROOF Remind that the error dynamics is given according
9 ] (12). Note that the observer gaiR (X) can change its
sign only in dependence ok as from X the substrate
concentrationS can not be directly deduced. Thus consider
in the following the three cases of different sign possible
for K(X).

Figufe' 3. Possible’constellations for positive observation eIroriA) Let K(X) > 0 andu = 0. In (Schaum, 2006) it is
AN S = Su, BB 5 < S, L 5> Su. shown, that the substrate concentration converges=0,

at least in the absence of the input. Thus all trajectories
in the (S, ¢)-phase plane are attracted by the lifie= 0.
Therefore ifS < Sy while € # 0, € always is repelled from

e = 0 as can be seen by the qualitative analysis in Fig. 4.
(B) Now assume thak(X) = 0. Then the observer error
e%ynamics reduces = —ue. Thus ifu = 0 the observation
error keeps constant. Note that= 0 is not a Bad Input.

Specific growth rateu(S)
e

50 100
Substrate concentratio$i

in Fig. 3. Thus forS < Sy, = A(S,¢) > 0 and for
S > Sy, = A(Se) <0.If e <0 these results are
exactly reverse, i.eS < Sy, = A(S,¢) < 0 and
S > Sy, = A(S,¢) > 0. Due to the non-monotonic
behavior ¥ forms a separating curve in thgs, ¢)-plane
segmenting the plane, together with the coordinate ax

in 4 regions of different sign of the first term, |.e.(C) Last of all let K(X) < 0. A necessary and sufficient

'?h((f’ ;c))lfli) (vil(er ’ ?j I(I)I\L,Ji?it(;ite(:,jrr:nhzlsgi.z:sf%r ?:o?grsait-li\;% ivesondition for the stability of the time-variant error ecjoat
g prop p : = f(t,e) is thatI7T := [t,,00) C R with ¢, arbitrarily

. €=
result caused by the difference of observed and reﬁsllrge such thatf(t,¢) < 0, ¥ t € T. This condition yields
growth rate. It clarifies that it is not possible to design th?he f(;IIowing asseésmen{ fd((X)'.

observer gain in such a way, that the observer converges

for all system trajectories produced by inputs which are eA(S, ) K (X)X — ue® < 0. (13)
not bad. This phenomenon is unexpected as it has been

shown that the system is detectable. But the influence &olving this inequality forK(X) and assuming that the
the non-monotonicity yields a destabilization of certairpair (e, S) fulfills eA(S,e) > 0 and A(S,¢€) < 0 (which is
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ROO. Due to the loss of observability it is easily to see

2 that a classical High-Gain Observer can not be designed.
_E Further it results impossible to find a (at least practically
S0 ) Smaz applicable) extension of the system dynamics to a state
o affine form, which is a classical method to treat systems
52 with reduced observability properties. Recently an observ
2 design based on dissipativity has been applied resulting in
o satisfying observer convergence. This result further r@ssu
—4 the global exponential convergence of the observer trajec-

tories (Schaum and Moreno, 2006). Thus there exists a Full
0 20 40 60 80 .
Substrate concentatio$i Order Observer (FOO). In the case of linear systems, the
Figure. 5. Qualitative behavior of the right hand side of assessmer@iXistence of a FOO implies the existence of an ROO. The
on K in dependence on the substrate concentrasidor ¢ < 1.  presented example thus provides a system type for which
this implication does not hold in the case of nonlinear
systems (at least not in general).
satisfied for pairgS, €) in the first quadrant above the curve
defined bySy). In this case (13) yieldsd < — . V. CONCLUSIONS
Thus for crossing the indistinguishable manifoil in The mathematical model of a biochemical reactor process
the first quadrant from the the right to the lef(X) Is analyzed with respect to its observability propertiess |
has to be less than minus infinity, as(S,e) — 0 as shown that the system is not globally observable due to
(¢,8) — W. Thus such a trajectory can not converge for &he existence of not identical indistinguishable trajeet
finite observer gainlJ Sufficient conditions for the system’s detectability areegi
and the detectability under this conditions is proven. Fur-
One can see that for all of the three cases of Gign ther, the applicability of a Reduced Order Observer (ROO)
there exist trajectories for which it is impossible to desig to this model is analyzed resulting in the impossibility to
K(X) in such a way that the error is globally convergingdesign the observer gain so that all possible distinguishab
for distinguishable trajectories. Note that the dependendrajectories can be observed.
of K(X) in the last mentioned case can be illustrated as
e — 0 applying the law ofL’Hospital for eA(S,¢) > 0 and _
0 < e< 1, yielding K < — %< Thus forS — g+ This work has been supported by DGAPA-UNAM under
L ’ * max .
this term tends to minus méinity. This illustrates thatthe project IN111905-2.
the man_ifold v is ok_Jstructing the convergence of the REFERENCES
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to be not applicable, as illustrated in this paper for the
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