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Abstract— A class of mathematical models for biochemical
processes is analyzed with respect to its global observability
properties. It is shown that, for non-monotonic reaction
kinetics, there exist not identical indistinguishable trajectories
and thus the system model is not globally observable in this
case. However, it is shown that the system is detectable, since
indistinguishable trajectories are convergent. Despite of this
fact, several observer design methods, as for example the
High-Gain method, cannot be used to design an observer for
this system. In particular, it is shown in this paper that for
a general class of Reduced Order Observers it is impossible
to select an output injection, so that the observer converges
for all (distinguishable) trajectories, when the kinetics is not
monotone. This result is surprising due to the detectability of
the system.

Key Words: Biochemical process models, Global Observability
and Detectability, Reduced Order Observes.

I. I NTRODUCTION

A. General aspects of the work

The importance of observers in technical applications has
increased in the last years. Nevertheless the design of ob-
servers for nonlinear systems is a challenging task requiring
in general a high analytic effort. The possibility of designing
an observer is influenced by the observability properties of
the system. Loosely speaking, observability represents the
possibility to distinguish all system states by knowledge of
the input and output signals. If the system’s trajectories are
not globally distinguishable the system is not observable.In
this case a necessary condition for the convergence of an
observer is the system’s detectability, i.e. the convergence
of all indistinguishable trajectories. Thus the first step in
the design of an observer has to be the analysis of the
observability properties. For nonlinear systems a complete
analysis of the observability using conventional methods,
such as the Kalman condition or the observability map, is
often hard to obtain. Moreover, if these conditions are not
satisfied it is not possible to assert the non observability
of the system since they are only sufficient. Furthermore,
they are of local character and do not permit an analysis
of the system’s detectability. Recently a method to an-
alyze the global observability and detectability has been

proposed (Ibarra, Moreno and Espinosa, 2004), (Moreno
and Dochain, 2005), (Schaum, Moreno and Vargas, 2005)
using basic definitions of indistinguishability and observ-
ability. This method results as a quite natural implicationof
these definitions and permits a deep understanding of the
dynamical nature determining the observability properties
of the system. Using this method the dynamics of a class
of (bio)chemical processes is analyzed. These processes are
determined by the underlying kinetics law. The analysis is
performed for two basic types of such kinetics found in
process engineering. The observability analysis results in
the existence of indistinguishable trajectories, and thusthe
loss of global observability, and finishes with the demon-
stration of the system’s detectability. This shows that a
necessary condition for the existence of globally converging
observers is satisfied, so that in principle an observer exists
that converges for every system’s trajectory. Despite of this
it is shown in this paper that there does not exist a Reduced
Order Observer (ROO) converging for all (distinguishable)
trajectories in the case of a non-monotonic kinetics of
Haldane type, although it exists in the case of a monotonic
kinetics. Thus the existence of ROOs depends heavily on the
type of reaction kinetics determining the process dynamics.

B. State-of-the-Art

As mentioned above, the considered model class
describes in a general way the dynamical behavior of
some (bio)chemical processes frequently found in process
engineering. The main inspiration of the presented work
is a biological reactor for the treatment of industrial waste
water, actually investigated at the Instituto de Ingenierı́a of
the Universidad Nacional Autónoma de Ḿexico (UNAM)
(Moreno and Buitron, 2002). The model has been used
for different controller designs. Due to the fact, that the
considered concentration of the substrate is not measurable,
the applicability of different observer design methods has
been analyzed in former works (see e.g. (Vargas and
Moreno, 1999), (Vargas, 1999)). The design of observers
turned out to be more difficult than expected and thus a
profound analysis of the dynamical nature of the occurring
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problems is searched. This aspect has been treated in
following works. Therein the above mentioned method to
analyze the system’s detectability has been used (Schaum,
Moreno and Vargas, 2005), (Schaum, 2006)). This leads
to a deeper understanding of the structural problems
obstructing the design of some observers. In the case
of a Reduced Order Observer (ROO) it is possible, to
show explicitly the influence of the existence of a set of
indistinguishable trajectories (and thus the loss of global
observability) on the observer error dynamics. Thus the
presented analysis offers a deeper understanding of the
influences of the observability properties on the design of
observers for the presented model class and is a progress
in the comprehension of the dynamical interconnections
eventually complicating the direct application of certain
methods.

The paper is organized as follows. In section II the
class of process models, as well as the corresponding
observability and detectability analysis, is presented. This
is followed in section III by the analysis of the applicability
of ROOs. Section IV includes some further remarks and
implications and closes the presented analysis.

II. OBSERVABILITY AND DETECTABILITY

A. Presentation of the mathematical model

In the sequel the considered class of (bio)chemical
process models is introduced. We restrict the analysis to
a model recently developed for a biochemical process for
the treatment of industrial waste water. Note that many
(bio)chemical processes are dynamically similar to the one
studied here and thus the presented analysis is valid (with
some restrictions) for a wide class of nonlinear systems
occurring in process engineering. In the following all pa-
rameters are assumed to be known and further constant.
System’s equations are:

Ẋ =µ(S)X − (Kd + u)X

Ṡ = − C1µ(S)X + u(Sin − S) (1)

y =X,

with the non-negative system’s stateη(t) :=
[X(t) S(t)]T ∈ R

2
+ and the initial condition

η(0) = [X0 S0]
T , where X represents the biomass

(concentration) used to degrade the toxic substrate
(concentration)S. The trivial case of a reactor without
biomass (X = 0) will be excluded. The input is given by
the dilution rate (i.e. inflow divided by the reactor volume)
and represented byu. The model parameters are given by
the biomass mortality rateKd and the reciprocal biomass
yield coefficient C1, both constant and positive. The
substrate concentration in the inflow is given bySin > 0.
The specific biomass growth rateµ(S) can depend on the
substrate concentration in different ways. If the dynamics
of the reactor is determined by a monotonic kinetics like

Monod, it can be represented as follows:

µM (S) =
µM0S

K + S
, (2)

with kinetic parametersµM0 and K. A further possibility
is given by a non-monotonic Haldane kinetics

µH(S) =
µH0S

S2

Ki
+ S + Ks

, (3)

with (positive) kinetic parametersµH0, Ks and Ki. Note
that, due to the non-monotonicity, the kinetics is not in-
jective. It reaches its maximumµmax < µ0 at Smax =√

KsKi. The dependence on the substrate concentrationS

for the Haldane kinetics is illustrated in Fig. 1. For further
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Figure. 1. Specific biomass growth rate determined by a Haldane
kinetic µH(S) in dependence on the substrate concentrationS.

studies and deduction of the special model for the biological
process for the treatment of waste water see (Henze, 1986),
(Moreno and Buitron, 2002), (Vargas and Moreno, 1999)
and references therein.

B. Analysis of the observability properties

In the sequel a short deduction of the system’s observ-
ability properties is presented. By a classical observability
analysis using the observability mapΦ = [X,LfX]T one
immediately can see, that the model is observable in the
case of a monotonic kinetics, like Monod. For a Haldane
kinetics, due to the non-injective behavior ofµ(S), the
observability map becomes non-injective except atS =
Smax, and thus can not be used to analyze the observability
properties. On the other hand, a linearization of this system
leads to a Kalman-Observability matrix which is singular
at S = Smax. Thus the only point where, by use of
the observability map observability can be assured, is not
locally observable! This demonstrates a certain paradox
between these two definitions, whose clarification is not the
issue of this paper.
In order to obtain a global analysis of the observability
properties, by necessary and sufficient conditions, a method
is used which has been proposed in some previous works
(see e.g. (Ibarra, Moreno and Espinosa, 2004), (Moreno
and Dochain, 2005), (Schaum, Moreno and Vargas, 2005)).
This method uses direct implications of the basic definitions
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of indistinguishability and observability as e.g. given in
(Nijmeier and van der Schaft, 1990). Two trajectories are
called to be indistinguishable, if they produce the same
output signal while guided by the same input. A system then
is called observable, if all indistinguishable trajectories are
identical, i.e. the internal states are exactly the same forall
time. This property is very strong. One can introduce a less
restrictive property by defining detectability as the conver-
gence to the same trajectory of all indistinguishable pairsof
trajectories. Finally a Bad Input is defined as an input signal
producing not identical indistinguishable trajectories.Thus
the existence of Bad Inputs implies the non-observability
of a dynamical system. From this considerations one may
understand the following analysis as the determination of
the observability properties of (1) by the determination ofall
indistinguishable trajectories and their dynamical behavior
(see e.g. (Ibarra, Moreno and Espinosa, 2004), (Moreno and
Dochain, 2005) for more information). First of all an exact
copy of the system is introduced

ξ̇ =µ(σ)ξ − (Kd + u)ξ

σ̇ = − C1µ(σ)ξ + u(Sin − σ) (4)

ρ =ξ,

with the system stateζ(t) = [ξ(t) σ(t)]T ∈ R
2
+ and

the initial stateζ(0) = [ξ0 σ0]
T . Further, the state error

is defined byǫ := ζ − η. A necessary and sufficient
condition for the indistinguishability of a pair(η, ζ) of
trajectories is that the two outputsX and ξ are identical,
i.e. y(t) ≡ ρ(t) ⇒ ǫ ≡ 0. If this is fulfilled, then
X(n)(t) = ξ(n)(t), ∀n ∈ N0, t ∈ R+. For n = 0 this
equivalence reads obviouslyX ≡ ξ. For n = 1 the equality
can be reformulated as

µ(S(t) + ǫ2(t)) ≡ µ(S(t)). (5)

Thus the indistinguishable trajectories are restricted toa
submanifoldΨ ⊂ Ξ := R

2
+ × R

2, defined in the extended
state space of the system state and the error, which is
determined by the following set of trajectories

Ψ :={(η, ǫ) ∈ Ξ := R
2
+ × R

2|ǫ1 ≡ 0&µ(η2 + ǫ2) ≡ µ(η2)}
(6)

={(η, ǫ) ∈ Ξ|ǫ1 ≡ 0&S =
1

2

(

−ǫ2 +
√

ǫ22 + 4KsKi

)

}.

One directly notices, that for a monotonic kineticsµ(S)
as e.g. corresponding to Monod (2) this set is given by all
trajectories(η, ǫ) ≡ (η, 0), as the equivalence ofµM (S) ≡
µM (S + ǫ2) directly implies ǫ2 ≡ 0. Further one can
see, that for a non-monotonic kinetics like Haldane (3)
there exist in principleǫ2 6= 0 satisfying condition (5).
For Bad Inputs and initial conditions of the extended state
vector (η, ǫ) on the manifoldΨ the trajectories will stay
indistinguishable for all times. Note that the existence of
the indistinguishable trajectories requires the existence of
a positive Bad Input to be physically realizable. The Bad

Input can be obtained fromX(n) ≡ ξ(n) with n = 2 and
corresponds to

u∗ =
C1µ(S)X(µ′(S + ǫ2) − µ′(S))

µ′(S + ǫ2)(Sin − S − ǫ2) − µ′(S)(Sin − S)

(7)

=
C1µ(S)XKsKi(2S + ǫ2)

(KsKi − 1)[(Sin − S)(2S + ǫ2) + S2KsKi]
.

As one can see from the algebraic constraint onS in (6),
it is not possible forS to converge to zero on the manifold
Ψ. Thus µ(S(t)) > 0 ∀ t ∈ R+ holds. FurtherX > 0
for all t ∈ R+\{∞}. Noting that the only zero of (7) is
ǫ2 = −2S which contradicts (5) one can see, that for all
kinetics with parametersKs, Ki satisfyingKsKi > 1 and
Sin > Smax the input signal is positive and thus feasible, as
S is naturally bounded byS ≤ Sin, whenS0 ≤ Sin. At this
point of the analysis one can summarize that the system can
excite not identical indistinguishable trajectories guided by
bad input signals determined by (7). Thus (1) is not globally
observable. To see if (1) is detectable one has to prove, that
all pairs of indistinguishable trajectories(η, ζ) converge.
To analyze this condition one has to analyze the stability
of the dynamics of the extended state on the manifoldΨ,
i.e. the dynamics of[η, ǫ]T ∈ Ψ ⊂ Ξ. From the definition
of Ψ (6) one can see, thatǫ1 ≡ 0 on Ψ. This dynamics
thus corresponds in principle to the following differential-
algebraic system

Ẋ =X
(
µ(S) − Kd − u∗

)

ǫ̇2 = − u∗ǫ2 (8)

S =
1

2

(

−ǫ2 +
√

ǫ22 + 4KsKi

)

.

Thus, in order to analyze the detectability of (1), one has
to analyze the asymptotic stability of the set(η̃, 0)T ∈ Ψ
defined by ǫ2 = 0. Note that (8) is actually a planar
system, as the Bad Input (7) only depends onX, ǫ2 and
S(ǫ2). Under the above mentioned conditions, assuring the
positivity of the Bad Input signal, the global stability of
ǫ = 0 in Ψ can be assured and the detectability of (1)
thus is implied. This result is formalized in the following
proposition.

Proposition 1: Consider the dynamics (1) on the differ-
entiable manifoldΨ of indistinguishable trajectories defined
by (6). Further suppose thatKsKi > 1 and the substrate
concentration in the inflowSin > Smax and constant, so
that the Bad Input (7) is positive. Thenǫ2(t) converges
asymptotically toǫ2 = 0 ∀ [X0 S0 0 ǫ20]

T ∈ Ψ. As further
ǫ1 ≡ 0 on Ψ, ǫ = 0 is asymptotically stable onΨ, i.e.
system (1) is detectable.

PROOF: To proof the asymptotic stability ofǫ2 = 0, i.e.
its attractiveness and stability in the sense ofLyapunov,
we make use of the well-known theorem ofPoincaŕe-
Bendixson. First note, that due to the positiveness
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of the Bad Input (7) under the above assumptions
∣
∣ǫ2(t)

∣
∣ ≤

∣
∣ǫ20

∣
∣ ∀ t ∈ R+, i.e. ǫ2 is not increasing.

Further note that the dynamics (8) has at most two
equilibrium points located on theX-axis. Thus if the
trajectory converges thenǫ2(t) → 0, i.e. ǫ2 ≡ 0 is
attractive. As ǫ2 is non-increasing it is further stable.
Further from (8) one can directly see that if the Bad
Input u∗ is integrally unbounded asymptotic stability
is warranted. Now, if

∣
∣
∣
∣[X(t) ǫ2(t)]

T
∣
∣
∣
∣ → ∞, then

∃ κ > 0 : u∗(t) > κ ∀ t ∈ R+, i.e. the input is integrally
unbounded and thuslim

t→∞
ǫ2(t) = 0. A limit cycle cannot

exist asǫ2(t) is not increasing. Thusǫ2 → 0 holds under
the above assumptions assuring the positivity of the Bad
Input and the convergence of all pairs of indistinguishable
trajectories to one trajectory is guaranteed. Thus (1) is
detectable.�

Figure 2 illustrates the behavior of indistinguishable
trajectories of substrate concentrations onΨ ⊂ Ξ in
this case. One can see, that the substrate concentrations
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Figure. 2. Behavior of indistinguishable trajectories of the substrate
concentrationS andσ = S + ǫ2.

converge to the maximum argument of the specific growth
rateµ(S) ≡ µ(σ). As S can not converge to zero onΨ this
is the only possibility for the indistinguishable trajectories
to converge to each other.

III. E XISTENCE OFREDUCED ORDER OBSERVERS

In the sequel the existence of a Reduced Order Observer
(ROO) for system (1) is analyzed. First of all a short
introduction to the basic idea of the design method is given,
followed by the illustration that the existence of ROOs
for this model class depends heavily on the type of the
underlying kinetics.

A. General Introduction

Reduced Order Observers have first been introduced by
Luenberger(see (Luenberger, 1971)). The general idea is
to reduce the order of the observer for an-dimensional
system with m-dimensional output signal to(n − m)
observer states. The designed observer thus does not have
to reconstruct measured data, i.e. there is no redundancy in

the observer states. To illustrate the basic idea consider the
following system

η̇ =f1(η,y, u)

ẏ =f2(η,y, u) + f3(y, u),

with initial condition η(0) = η0 ∈ Ξ ⊆ R
n and y(0) =

y0 ∈ R
m and all f i, i = 1, 2, 3 assumed to fulfill a

Lipschitz condition. One assumes the time derivative of the
outputy to be measurable and defines the new fictive output

γ := ẏ − f3(y, u) = f2(η,y, u).

Thus one can restrict the system representation to the
following

η̇ =f1(η,y, u)

γ =f2(η,y, u),

and can define an(n−m) dimensional observer according
to

˙̂η =f1(η̂,y, u) + K(y)[γ − γ̂] (9)

γ̂ =f2(η̂,y, u),

with initial state η̂(0) = η̂0. In practical applications the
time derivative of the outputy in γ has to be eliminated,
as, in general, it can only be approximatively determined.
This can be realized in some cases by a state transformation.
Thus remark that (9) can be rewritten as

˙̂η =f1(η̂,y, u) + K(y)
[

ẏ − f3(y, u)
︸ ︷︷ ︸

γ

−f2(η̂,y, u)
]

.

Now define the new statez := η̂−Φ(y), with aC1–function
Φ(y) to be defined in the following. The time derivative of
z is governed by

ż =f1(z + Φ(y),y, u) + K(y)
[

ẏ − f3(y, u)− (10)

− f2(y, u)
(
z + Φ(y)

)]

− ∂Φ(y)

∂y
ẏ.

Thus the influence oḟy is eliminated if ∂Φ(y)
∂y

= K(y),
such that the original state has to be reconstructed cor-
respondingη̂ = z + Φ(y). To apply this method it has
to be assured at least that the transformed observer state
z converges to the transformed original state which is
equivalent to the convergence of the observer corresponding
to (9). This is very important as it represents a fundamental
condition for the applicability of this strategy.
In the following the applicability of this approach to the
model class is analyzed. The main result is that for a non-
monotonic kinetics of Haldane type due to the existence of
a submanifold of indistinguishable trajectoriesΨ ⊂ Ξ it is
not possible to design the observer gain in such a way, that
for all initial states and inputs all distinguishable trajectories
converge. Thus for a non-monotonic Haldane type kinetics
no ROO exist for (1). This shows the dependence of
the existence on the kinetics and thus the observability
properties of the regarded process.
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B. Existence of ROO for the model class

In the following the existence of ROOs for the model
class defined by (1) is analyzed. Therefore assume that the
time derivative of the outputX, i.e. Ẋ is known at each
time-instant. Thus one can construct the outputγ := Ẋ +
(u + Kd)X = µ(S)X. A ROO thus has to be designed for
the substrate concentration and has the form

˙̂
S = − C1µ(Ŝ)X + u(Sin − Ŝ) + K(X)(γ − γ̂) (11)

γ̂ =µ(Ŝ)X,

according to the introductory explanations to this section.
Defining the observation error asǫ := Ŝ−S and considering
γ = µ(S)X, the error dynamics can be written as

ǫ̇ = −
(
µ(S) − µ(S + ǫ)

)
K(X)X − uǫ. (12)

In the sequel assume that the kineticsµ(S) is of Haldane
type. Sign and value of the first term in (11) are influenced
by the initial error, because of the non-monotonicity. The
difference between observed and real growing factor,
i.e. ∆(S, ǫ) :=

(
µ(S + ǫ) − µ(S)

)
vanishes on the

submanifold of indistinguishable trajectoriesΨ. As ǫ1 ≡ 0
is considered, this manifold can be represented by all
pairs (ǫ, SΨ) fulfilling SΨ = 1

2

(
− ǫ +

√
ǫ2 + 4KsKi

)
.

There exist three possibilities fixingǫ > 0 as illustrated
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Figure. 3. Possible constellations for positive observation error:
A–A’ : S = SΨ, B–B’ : S < SΨ, C–C’ : S > SΨ.

in Fig. 3. Thus forS < SΨ, ⇒ ∆(S, ǫ) > 0 and for
S > SΨ, ⇒ ∆(S, ǫ) < 0. If ǫ < 0 these results are
exactly reverse, i.e.S < SΨ, ⇒ ∆(S, ǫ) < 0 and
S > SΨ, ⇒ ∆(S, ǫ) > 0. Due to the non-monotonic
behavior Ψ forms a separating curve in the(S, ǫ)-plane
segmenting the plane, together with the coordinate axes,
in 4 regions of different sign of the first term, i.e.
∆(S, ǫ)K(X)X, as illustrated in Fig. 4 for a positiveK.
The following proposition emphasizes a contra-intuitive
result caused by the difference of observed and real
growth rate. It clarifies that it is not possible to design the
observer gain in such a way, that the observer converges
for all system trajectories produced by inputs which are
not bad. This phenomenon is unexpected as it has been
shown that the system is detectable. But the influence of
the non-monotonicity yields a destabilization of certain
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Figure. 4. Phase plane of the error dynamics. Segmentation in 4
regions of different sign by theHaldanekinetic for K > 0. The
curve represents the phase-pairs for whichµ(S) = µ(S + ǫ) and
thus corresponds the manifoldΨ.

observer error trajectories. Thus there does not exist a
ROO for (1) determined by a non-monotonic kinetics of
Haldane type. The fundamental idea of the proof is to
derive necessary conditions for the convergence and to
show that they can not be satisfied in some special cases.
Therefore a case distinction of the sign ofK(X) is used.

Proposition 2: Independently on the observer gain
K(X) ∈ R of the ROO (11) there exist initial conditions
[S0 ǫ0]

T ∈ R+ ×R as well asu : R+ → R≥0 such that the
observation errorǫ(t) = Ŝ(t)−S(t) with dynamics accord-
ing to (12) and (1) can not converge for all distinguishable
trajectories, i.e. trajectories[X(t) S(t) 0 ǫ(t)]T ∈ Ξ\Ψ.
Thus no ROO exist for (1).

PROOF: Remind that the error dynamics is given according
(12). Note that the observer gainK(X) can change its
sign only in dependence ofX as from X the substrate
concentrationS can not be directly deduced. Thus consider
in the following the three cases of different sign possible
for K(X).
(A) Let K(X) > 0 and u = 0. In (Schaum, 2006) it is
shown, that the substrate concentration converges toS = 0,
at least in the absence of the input. Thus all trajectories
in the (S, ǫ)-phase plane are attracted by the lineS = 0.
Therefore ifS < SΨ while ǫ 6= 0, ǫ always is repelled from
ǫ = 0 as can be seen by the qualitative analysis in Fig. 4.
(B) Now assume thatK(X) ≡ 0. Then the observer error
dynamics reduces tȯǫ = −uǫ. Thus ifu ≡ 0 the observation
error keeps constant. Note thatu ≡ 0 is not a Bad Input.
(C) Last of all letK(X) < 0. A necessary and sufficient
condition for the stability of the time-variant error equation
ǫ̇ = f(t, ǫ) is that∃T := [ts,∞) ⊂ R+ with ts arbitrarily
large, such thatǫf(t, ǫ) < 0, ∀ t ∈ T . This condition yields
the following assessment forK(X):

ǫ∆(S, ǫ)K(X)X − uǫ2 < 0. (13)

Solving this inequality forK(X) and assuming that the
pair (ǫ, S) fulfills ǫ∆(S, ǫ) > 0 and∆(S, ǫ) < 0 (which is
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Figure. 5. Qualitative behavior of the right hand side of assessment
on K in dependence on the substrate concentrationS for ǫ ≪ 1.

satisfied for pairs(S, ǫ) in the first quadrant above the curve
defined bySΨ). In this case (13) yieldsK < − uǫ

X|∆(S,ǫ)| .
Thus for crossing the indistinguishable manifoldΨ in
the first quadrant from the the right to the left,K(X)
has to be less than minus infinity, as∆(S, ǫ) → 0 as
(ǫ, S) → Ψ. Thus such a trajectory can not converge for a
finite observer gain.�

One can see that for all of the three cases of sign(K)
there exist trajectories for which it is impossible to design
K(X) in such a way that the error is globally converging
for distinguishable trajectories. Note that the dependence
of K(X) in the last mentioned case can be illustrated as
ǫ → 0 applying the law ofL’Hospital for ǫ∆(S, ǫ) > 0 and
0 < ǫ ≪ 1, yielding K < − u

Xµ′(S) . Thus forS → S+
max

this term tends to minus infinity. This illustrates that
the manifold Ψ is obstructing the convergence of the
observation error as it produces a separating submanifold
which in some cases can not be crossed with a finite
observer gain. The dependence of the right-hand-side of
this assessment forǫ ≪ 1 is illustrated in Fig. 5. Note
that the non-applicability results from the separation in the
(S, ǫ2) plane by the indistinguishable submanifoldΨ. For
a monotonicMonodkinetics this separation does not occur
as it results in the previous section that for an equivalent
system withMonod kinetic the set of indistinguishable not
identical trajectories is empty. Thus this observer design
method is applicable to an equivalent system determined by
such a kinetics. This shows, that for a change in the type of
the kinetics ROO can lose their applicability. Furthermore,
it illustrates the influence of the non-monotonicity of the
kinetics on the design of observers. Moreover it shows,
that the detectability of a nonlinear system is not sufficient
for the existence of a ROO.

IV. SOME REMARKS ON OTHER OBSERVER DESIGN

METHODS AND IMPLICATIONS

The presented system model has been analyzed with
respect to the applicability of many observer design meth-
ods (Schaum, 2006). Surprisingly some of them resulted
to be not applicable, as illustrated in this paper for the

ROO. Due to the loss of observability it is easily to see
that a classical High-Gain Observer can not be designed.
Further it results impossible to find a (at least practically
applicable) extension of the system dynamics to a state
affine form, which is a classical method to treat systems
with reduced observability properties. Recently an observer
design based on dissipativity has been applied resulting in
satisfying observer convergence. This result further assures
the global exponential convergence of the observer trajec-
tories (Schaum and Moreno, 2006). Thus there exists a Full
Order Observer (FOO). In the case of linear systems, the
existence of a FOO implies the existence of an ROO. The
presented example thus provides a system type for which
this implication does not hold in the case of nonlinear
systems (at least not in general).

V. CONCLUSIONS

The mathematical model of a biochemical reactor process
is analyzed with respect to its observability properties. It is
shown that the system is not globally observable due to
the existence of not identical indistinguishable trajectories.
Sufficient conditions for the system’s detectability are given
and the detectability under this conditions is proven. Fur-
ther, the applicability of a Reduced Order Observer (ROO)
to this model is analyzed resulting in the impossibility to
design the observer gain so that all possible distinguishable
trajectories can be observed.
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