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Abstract— A new type of the, so-called, projectional
observers is suggested. The main property of such observers
is that they keep the obtained (generated) state estimates
of a dynamic model within a compact set, defined by given
constraints (usually, having physical meaning) independently
of a measurement noise effect. The obtained estimated
trajectories turns out to be non-smooth (may be non-
differentiable at some times of the process). That’s why, to
analyze its stability, the standard Lyapunov functions are
not applicable. Here we suggest the Lyapunov-Krasovski
functional (which is an integral of a standard Lyapunov
function) to overcome this problem and to realize the stability
analysis for state estimation error. The upper bound for the
estimation error is obtained which turns out to be rationally
dependent on the lag of the filter and linear with respect to
the noise power. Two example (the Chua’s circuit and the
chemical model) illustrate the workability of the suggested
observers.

Keywords: State observers, Lyapunov stability, projectional
operator.

I. INTRODUCTION AND PROBLEM FORMULATION

I-A. State estimation: a brief survey on observation prob-
lem
The state estimation (observation) problem arrises during
Identification or Feedback Control when the current system
states can not be directly measured and the only available
information at each time instant is the output of the system
which is a function of the current state usually corrupted by
”output noise”. Modern Identification Theory (Eykhoff and
Parks, 1990), and (Ljung, 1979) basically deals with the
problem of the efficient extraction of signal and systems
dynamic properties based on available data measurements.
Nonlinear system identification is traditionally concerned
with two issues: a) estimation of parameters based on
direct and complete state space measurements, and b) state
space estimation of completely known nonlinear dynamics.
Here we will deal with the b-issue. Contribution on the
observer construction problem for nonlinear systems in
the presence of complete information about the nonlinear
dynamics, was performed by (Williamson, 1977), (Krener
and Isidori, 1983), (Krener and Respondek, 1985), and (Xia
and Gao, 1989). Most of these results deal with the situation
where it is possible to obtain a set of rather restrictive

conditions when the dynamics of the observation errors
is linear and there is no observation noise. In (Walcott
and Zak, 1987) a class of observers for nonlinear systems
subjected to bounded nonlinearities or uncertainties was
suggested. A canonical form and a necessary and sufficient
observability condition for a class of nonlinear systems
which are linear with respect to the inputs was established
by (Gauthier and Bornard, 1981). The extended Luenberger
observer for a class of SISO nonlinear systems was designed
by (Zeitz, 1987). These results were extended in (Birk and
Zeitz, 1988) for a class of MIMO nonlinear systems. An ex-
ponentially convergent observer was derived in . (Gauthier,
Hammouri and Othman, 1992) for nonlinear systems that
are observable for any input signal. More advanced results
were obtained in (Ciccarella, Dalla and Germani, 1993)
where based on simple assumptions of regularity, global
asymptotic convergence of the estimated states to the true
states was shown. A further line of investigation relates
to the observation problem subjected to bounded nonlin-
earities or uncertainties was developed in (Walcott and
Zak, 1987) and (Walcott, Corless and Zak, 1987). In the
situation when the plant model is incomplete or uncertain,
the implementation of high-gain observers seems to be
convenient (Tornambè, 1989), (Dabroom and Khalil, 1997),
(Nicosia, Tomei and Tornambe, 1988), (Bullinger and All-
gower, 1997)). In (Yaz and Azemi, 1994) a robust/adaptive
observer is presented for state reconstruction of nonlinear
systems with uncertainty having unknown bounds. A ro-
bust adaptive observer for a class of nonlinear systems is
proposed in (Ruijun,Tianyou and Cheng, 1997) based on
generalized dynamic recurrent neural networks. A robust
nonlinear observer is considered in (Shields, 1996) for
a class of singular nonlinear descriptor systems subject
to unknown inputs. This class is partly characterized by
globally Lipschitz nonlinearities. A suboptimal robust fil-
tering of states for finite dimensional linear systems with
time-varying parameters under nonrandom disturbances was
considered in P (Poznyak and Ososrio, 1994). Sliding mode
observers were studied in (Utkin, 1992). The approach
described in the book of (Edwards and Spurgeon, 1988)
is conceptually similar to that proposed by (Slotine, 1984).
The papers of (Walcott and Zak, 1987) and (Walcott and
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Zak, 1988) seek global error convergence for a class of
uncertain systems using some algebraic manipulations to ef-
fectively solve an associated constrained Lyapunov problem
for systems of reasonable order. This approach is discussed
in detail in (Zak and Walcott, 1990). This collection also
describes a hyperstability approach to observer design by
(Ballestrino and Innocenti, 1990), based on the concept
of positive realness. The comprehensive survey on these
problems can be found in (Poznyak, 2004).

An interesting topic related to state estimation arises
from the practical implementations, such cases where the
state vector belongs to a priori known set (even in the
noise presence), these restrictions have been involved into
the design of structure observers, we can find as mayor
importance examples: the interval observers and the mem-
bership function approach; in the first case is necessary to
calculate an upper and a lower bound for the observation
process considering a linear form of the system around
an equilibrium point; many practical implementations have
been implemented in the chemical and biotechnological
areas (Dochain, 2003)(Bernard and Gouzé , 2004)(Raïssi,
Ramdani and Candau , 2005). In the membership func-
tion approach is considered as assumption that the state
belongs to a convex set, the most important research in this
area involves to discrete systems or continuos linear sys-
tems (Alamo, Bravo and Camacho , 2005)(Durieu, Walter
and Polyak , 2001), some attempts to extend the results
to the continous nonlinear case have been presented by
(Chernousko, 2005).

I-B. Observers design problems under known state con-
straints: motivation

Let us consider the nonlinear continuous-time system
with measured output which is given by the following ODE

ẋt = f (xt, t) + ξt, x0 is fixed
yt = Cxt + ηt

(1)

where xt ∈ Rn is the state-vector at time t ≥ 0, yt ∈ Rm
is the corresponding output, available for a designer at any
time, C ∈ Rm×n is the state-output transformation (matrix),
ξt and ηt are noise in the state dynamics and in the output,
respectively.

In many practical problems there is know a priory that
the state-vector xt always belongs to a given compact set
X (even in the presence of noise) which has a concrete
physical sense. For example, the dynamic behavior of
some reagents participating in chemical reactions always
keeps nonnegative the current values of these components
which, in fact, are the corresponding concentrations of
those reagents and, hence, can not be negative. The same
comment seems to be true for another physical variables
and there dynamics such as temperature, pressure, heat and
etc.

The state observation problem consists in designing a
vector-function x̂t = x̂t

¡
yτ∈[0,t]

¢
∈ Rn depending only

on the available data yτ∈[0,t] available up to the time t

in such a way that it would be respectively close to its
real (but non-measurable) value xt. The measure of that
çloseness"depends on the accepted assumptions concerning
the state dynamics as well as the noise effects. The most of
filters solving this problem are presented also as an ODE,
namely, they are given by

d

dt
x̂t = F

¡
t, x̂t, yτ∈[0,t]

¢
, x̂0 is a fixed vector (2)

It seems to be very important to keep the generated state
estimates x̂t always remaining within a given compact set
X , that is,

x̂t ∈ X (3)

Indeed, if the obtained state estimated are supposed to be
used in some (in fact, feed-back) control construction, for
example, ut = Kx̂t, then any changing of a sign in x̂t may
provide significant instability effect of the corresponding
close-loop dynamics. One of (seemed to be evident) feasible
solutions consists in the introduction of some projection
operator πS {·} acting to the right-hand side of (2) keeping
the property x̂t ∈ X , i.e.,

d

dt
x̂t = πS

©
F
¡
t, x̂t, yτ∈[0,t]

¢ª
(4)

But such "evident"solution immediately provides many con-
structive problems of the set S, where one needs to project
the right-hand side of (2), it´s shape should be depends
on significantly nonlinear and non-stationary information,
that is, there should be S = S

¡
t, x̂t,

d
dt x̂t

¢
since the

scheme (4) realizes the projection of the estimates of the
state-derivative, but not the state-vector x̂t. That’s why
the problem of designing of other observers structures,
verifying (3), presents a real challenge for the engineering
community.

I-C. Basic assumptions
Hereafter to show the error estimarion stability we will

assume that
A1) The function f (x, t) is uniformly (on t ≥ 0) A-

Lipschitz continuous in x ∈ X, that is, for all t ≥
0 and all x, x0 ∈ X there exist a matrix A ∈ Rn×n
and a constant Lf <∞ such that

kf (x, t) -f (x0, t) -A (x-x0)k ≤ Lf kx-x0k (5)

A2) xt, x̂t ∈ X ⊂ Rn, and X is compact and convex.
It follows, there exists a constant Lδ < ∞ such
that for all t ≥ h

kδt − δt−hk ≤ Lδh (6)

where δt := x̂t − xt is the state observation error
at time t.

A3) The pair (C,A) is observable (with A as defined
in A1), that is, there exists the gain matrix K of
the projectional filter (10) - (12) such that

Ã := A−KC = −λT λ > 0 (7)
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where
T = P−1DP

P is an appropriate transformation matrix
with D triangular matrix given by:

D =

⎡⎢⎢⎢⎢⎣
1 − 1

λ 0 0 0
0 1 − 1

λ 0 0
· · · · · · · · · · · · · · ·
0 0 · · · 1 − 1

λ
0 0 · · · 0 1

⎤⎥⎥⎥⎥⎦ (8)

A4) The noises ξt and ηt acting to the system (1) are
uniformly (on t) bounded such that

kξtk
2
Λξ

:=ξ|tΛξξ ≤ 1

kηtk
2
Λη

:=η|tΛηηt ≤ 1
(9)

where Λξ and Λη are known "normalizing"non-
negative definite matrices which permits to operate
with vectors having components of different phys-
ical nature (for, example, meters, mole/l, voltage
and etc.).

I-D. Projectional observers
Instead of (4) let us consider the following observer called

the projectional observer (t ≥ h) wich involves the state
vector in an integral form:

x̂t = πX

⎧⎨⎩x̂t−h +

tZ
τ=t−h

F
¡
τ , x̂τ , ys∈[0,τ ]

¢
dτ

⎫⎬⎭ (10)

Here πX {·} is the projector to the given convex compact
X satisfying the condition

kπX {x}− zk ≤ kx− zk (11)

for any x ∈ Rn and any z ∈ X . Heret the set X is known
a priori, the projector operator lets consider the estimated
stated x̂t � X at each time in a unique form because of the
convex nature of X.

Remark 1: In this paper the projectional operator πX {·}
will be considered as a saturation function for each state
component, it is worth notice that under the projection effect
the trajectories {x̂t} are not differentiable for any t ≥ h >
0.

I-E. Main contributions
In this paper
- To demonstrate the workability of the projectional

observer (10), when

F
¡
t, x̂t, yτ∈[0,t]

¢
=f (x̂t, t)+K (yt-Cx̂t) , K ∈ Rn×m

(12)
(that corresponds to the standard Luenberger observer with
a linear correction term), we have suggested to implement
the "nonstandard"Lyapunov function

Vt :=

tZ
τ=t−h

kx̂τ − xτk2 dτ (13)

(which is, in fact, the Lyapunov -Krasovski functional) in-
stead of the standard Lyapunov function Vt =

1

2
kx̂t − xtk2

which is not differentiable on the trajectories of the projec-
tional observer (10) accordindg to Remark 1.

- We have found the upper bound for the averaged
observation error corresponding to (10) with (12).

- To show the effectiveness of the suggested observer we
have presented two illustrative example (the Chua’s circuit
and the chemical reactor) where two observers have been
compared: without projection (2) and with the projection
(10). In both examples the projectional observer (10) shows
the significant advantages.

II. UPPER BOUND FOR STATE ESTIMATION ERROR

Theorem 1: Under the assumptions A1-A4, for any λ0 >
0 and a sufficiently small positive h such that

λ0 − 3h (Lf + λ0)
2
> 0

with
λ := 2Lf + λ0

in (7), the projectional observer (10) - (12) provides the
following upper bound for the .averaged"estimation error:

ĺımsup
t→∞

1

t

tZ
τ=0

kx̂τ − xτk dτ ≤
b

a
+

r
b2

a2
+

c

a
(14)

where
a = λ0 − 3h (Lf + λ0)

2 > 0

b = ς +
h

2
[Lδ (4Lf + λ0)]

c = 3L2δh
3 + 3ζ2h

ς = kKk
°°Λ−1η °°1/2 + °°°Λ−1ξ °°°1/2

(15)

Demostración: Using the functional (13), in view of
the property (11) and taking into account that xt ∈ X by
A2, we have

V̇t = kδtk2 − kδt−hk2 = − kδt−hk2+°°°°°°πX
⎧⎨⎩x̂t−h+

tZ
τ=t−h

F
¡
τ , x̂τ , ys∈[0,τ ]

¢
dτ

⎫⎬⎭− xt

°°°°°°
2

≤

αt + βt

where

αt=

°°°°°°
tZ

τ=t−h

[f (x̂τ , τ) -f (xτ , τ) -KCδτ +Kητ − ξτ ] dτ

°°°°°°
2

βt=2

⎛⎝δt−h,

tZ
t−h

[f (x̂τ , τ) -f (xτ , τ) -KCδτ+Kητ -ξτ ] dτ

⎞⎠
Since

kητk =
r³
Λ
1/2
η ητ ,Λ

−1
η Λ

1/2
η ητ

´
≤q°°Λ−1η °° kητk2Λη ≤ °°Λ−1η °°1/2
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the following upper estimate holds:

βt ≤ 2

⎛⎝δt−h, Ã

tZ
τ=t−h

δτdτ

⎞⎠+
2h kδt−hk ς + 2Lf kδt−hk

tZ
τ=t−h

kδτk dτ

By (6) the right-hand side in the last inequality may be
estimated as

βt ≤ h
h
(2Lf -λ) kδt−hk2 + kδt−hk (2ς+h [Lδ (λ+2Lf )])

i
Analogously,

αt ≤

⎛⎝(Lf + λ)

tZ
τ=t−h

kδτk dτ + ζh

⎞⎠2

≤

3h2
³
(Lf + λ)2 kδt−hk2 + L2δh

2 + ζ2
´

that finally implies

V̇t ≤ h
h
−a kδt−hk2 + 2 kδt−hk b+ c

i
="Ã

−a
∙
kδt−hk−

b

a

¸2
+

b2

a

!
+ c

#
h

(16)

Rearranging and integrating (16), by the Jensen inequality

1

t

tZ
t=h

∙
kδt−hk−

b

a

¸2
dt ≥

⎛⎝1
t

tZ
t=h

∙
kδt−hk−

b

a

¸
dt

⎞⎠2

we get

1

t

tZ
t=h

kδt−hk dt−
b

a

t− h

t
≤

¯̄̄̄
¯̄1t

tZ
t=h

∙
kδt−hk−

b

a

¸
dt

¯̄̄̄
¯̄

≤ 1
t

tZ
t=h

∙
kδt−hk−

b

a

¸2
dt ≤

r
V0

ah · t +
b2

a2
+

c

a

that leads to (14).
Remark 2: In absence of noises (ξt = ηt = 0) it is

posible to take
°°Λ−1η °° and

°°°Λ−1ξ °°° less than any positive
value ε, then, if we consider small enougth h the state
estamitation error is asympotical estable:

ĺım
t→∞

kx̂τ − xτk→ 0 (17)

III. NUMERICAL EXAMPLES

Example 1 (Chua’s circuit): The mathematical model
((Wang, Duan and Huang, 2006)) for the considered circuit
is given by ẋ1,t (Volts), ẋ2,t (Volts) y ẋ3,t (Amperes)

involved in the next system of ODE:

ẋ1,t = α (x2,t − x1,t − f(x1,t))

ẋ2,t = x1,t − x2,t + x3,t

ẋ3,t = −βx2,t

f(x1,t) = b(x1,t) +
a−b
2 ((|x1,t + 1|− |x1,t − 1|)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(18)

The parameters of the circuit (18) are

a = −1,05, b = −0,711, α = 40 and β = 93,333

that corresponds to a specific case, such circuit works as a
simple oscillator. We consider

yt = x2,t + ηt

(voltage measurements) with white noise presence (ηt =
1% of x2,t magnitude ) and λ = 20. The compact set X is
considered by:

X :=

⎧⎨⎩ 0 ≤ x1,t ≤ 1,4
−2 ≤ x2,t ≤ 2
1 ≤ x3,t ≤ −2,5

⎫⎬⎭ (19)

The figures 1-2 represent the comparison between observer
and the projectional observer for each state variable esti-
mated.

Figura 1. Estimations of x1,t.

Example 2 (Ozonation process): High oxidation process
employing ozone is one of the most recent approaches in
the contaminated soil treatment by chemical agents such
as polyaromatic hydrocarbons. The next simplified model
((García, Poznyak, T., Chairez, I., and Poznyak A., 2006))
describes the ozonation process when a contaminant is
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Figura 2. Estimation of x3,t.

present in a soil just with solid and gas phase involve
(without water presence):

Vgasẋ1,t = V −1gas

£
WgasC

in
τ −Wgasx1,t−

k1S1x4,tx3,t −Kabs
t

³
Qfree_abs
máx − x2,t

´i
ẋ2 = Kabs

t

³
Qfree_abs
máx − x2,t

´
ẋ3,t = k1S1x4,tx3,t

ẋ4,t = −k1x4,tx3,t

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(20)

Here in (20)
yt = x1,t + ηt

is the ozone concentration at the output of the reactor as-
sumed to be measurable, x2,t is the ozone amount absorbed
by the soil which is not reacting with the contaminant,
x3,t is the ozone amount absorbed by the soil and reacting
with the contaminant, and x4,t is the current contaminant
concentration. The compact set X is given by:

X :=

⎧⎪⎪⎨⎪⎪⎩
0 ≤ x1,t ≤ x1,0

0 ≤ x2,t ≤ Qfree_abs
máx

0 ≤ x3,t ≤ VgasC
in

0 ≤ x4,t ≤ x4,0

⎫⎪⎪⎬⎪⎪⎭ (21)

We select λ = 0,5. The next figures 3-5 represents the
results of the observation state.

From the curves presented above we may conclude
that projectional observers suggested in this paper have
significantly better quality of state estimation especially in
the beginning of a process being compared with traditional
(non-projectional) observers.

Figura 3. Estimation of x2,t.

Figura 4. Estimation of x3,t.

IV. CONCLUSION

In this paper a new type of the projectional observer is
suggested. They permit to keep the obtained state estimates
within an a priory given compact set even in presence
of input and output noises. In most of practical problems
to realize the projection operation it is enough to apply
the corresponding saturation function. Since the obtained
estimated trajectories turns out to be non-smooth, to analyze
its stability the Lyapunov-Krasovski method is suggested.
The upper bound for the estimation error is obtained which
turns out to be rationally dependent on the lag of the filter
and linear with respect to a noise power. In presence of
output noise ηt this upper bound depends also on the gain
matrix K of the filter. If no noise in the output, the obtained
upper bound is uniform on K, even in noise absence,

23



Figura 5. Estimation of x4,t.

the asymptotical stability of the state estimation error is
achieved.
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