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Abstract– In this paper we present a novel approach to
control induction motor, considering the switching nature
of their electrical drivers. Modifying published results for
nonlinear identification using dynamic neural networks, we
propose a neural network identifier. The controller is de-
rived using the neural block control technique and sliding
modes control. Such control law is a discontinuous one,
which just takes values from the look-up table given by the
inverter circuit connected to the stator windings, This con-
trol strategy is motivated by the wearing that suffer the
switching electronic devices, when a PMW approach is used
at high frequency operation.

Keywords– Induction Motors, Variable Stucture Control,
Hybrid Systems, Electrical Drivers, Neural Networks.

I. Introduction

For electrical motors applications the drives are basically
constant voltage sources connected to the motor windings
by power electronic switching devices (BJT, GTO, IGBT,
etc.). In these cases, frequently the PWM (Pulse Width
Modulator)[7] is used to approach the desired control sig-
nal. Such modulator forces each power device to switch on
and off, for each sample time. However, if the devices are
operated at high frequency, this switching PWM strategy
may destroy the electronic devices in a short time period,
since for every switching (on and off) there is a dissipated
power peak.
Induction motors are widely used in industrial applica-

tions due to their reliability, simpler construction and re-
duced cost with respect, for example, to d.c. motors. How-
ever, the control of induction motors is a difficult prob-
lem due to their highly nonlinear dynamics [7]. For the
design control procedure, it is important however to take
into account the discrete feature of the electrical drives,
as done in [3], where the Direct Torque Control (DTC),
a heuristic control strategy for high power induction mo-
tor application, is proposed. As well as our approach, it
switches the power devices just one time, for each sample
time. The DTC is particularly appealing for slow-sampling
applications, where the average approximation used for the
implementation of modulation-based control may be inad-
equated. There has been some efforts to study the DTC
controller stability, for example [11] and [2].
In this paper, based on the Variable Structure Control

(VSC) method [16], we propose a discontinuous control
strategy for induction motors. Such control scheme en-
ables to reduce the device switching to only one during the
sample time, instead of the two switching required by the
PWM. This enables to reduce the power electronic devices

wearing, and increase theirs life span. Additionally, this
approach is robust against external disturbances fulfilling
the matching condition.
Modifying existing identification schemes based on dy-

namic neural networks [6], a neural network identifier of
block controllable form is proposed. Based on VSC and
Block Control [8], we propose a hybrid control law, which
consists of switching the inverter power devices. This strat-
egy guarantees a stable sliding mode motion on the desired
nonlinear manifold, where the rotor speed and flux tracking
errors tend to zero. The main contribution of this work is
to trade off between technological constraints and stability
analysis

II. Induction Motor Model

For electrical motors applications, the drives are basi-
cally constant voltage sources connected to the motor wind-
ings by power electronic switching devices (BJT, GTO,
IGBT, etc.). Fig. 1 shows a switched inverter, connected to
a three-phase induction motor [7]. The switching elements
may be, for example, IGBT(Insulated-Gate Bipolar Tran-
sistor). Each IGBT pair can be manipulated by one of the
control binary variables a, b and c. The power transistors
are commuted from the ON (saturation) to the OFF(cut-
off) state and vice versa, depending on theirs corresponding
binary variables, as illustrated in Fig. 1. All binary vari-
ables may change their states independently. Hence, there
are eight possible combinations.
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Fig. 1. The inverter and induction motor connection.
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A three-phase circuit can be reduced to a more conve-
nient two-phase model. Let define the input voltage vector
u = [uα uβ ]

>, in the two-phase α − β reference frame [1],
where uα and uβ stand, respectively, for the voltage ap-
plied to the induction motor stator windings. Then, the
available input vectors are restricted to a discrete set U .
The relation between these voltages vectors and the binary
variables (a, b and c) is formulated as

abc U uα uβ
000 u0 0 0
100 u1 2Vs/3 0

110 u2 Vs/3 Vs/
√
3

010 u3 −Vs/3 Vs/
√
3

011 u4 −2Vs/3 0

001 u5 −Vs/3 −Vs/
√
3

101 u6 Vs/3 −Vs/
√
3

111 u7 0 0

Table 1. Binary variables and theirs

corresponding input voltages vectors

where Vs is given by the constant voltage source, which
feeds the inverter. Figure 2 is the phase portrait of the
available input vectors.
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Fig. 2. Avaliable Stator Voltages Vectors

In many applications the discrete constrains (Table 1)
imposed by the inverter (Figure 1) are solved by using a
PWM (Pulse Width Modulator) approach [7]. So one may
suppose that input u can be any bounded time function.
The control law in derived considering such constrains.
The following set equations are presented in the stator-

fixed α− β coordinate system (see for instance [1]), they
describes the induction motor dynamics

χ̇1 = c1(χ2χ5 − χ3χ4)− c0TL
χ̇2 = −c2χ2 − npχ1χ3 + c3χ4
χ̇3 = −c2χ3 + npχ1χ2 + c3χ5 (1)

χ̇5 = c4χ2 + c5npχ1χ3 − c6χ4 + c7uα
χ̇6 = c4χ3 − c5npχ1χ2 − c6χ5 + c7uβ

where χ1 represents the angular velocity of the motor
shaft, χ2 and χ3 are, respectively, the rotor magnetic flux
leakage components, χ4 and χ5 are, respectively, the stator
current components, uα and uβ stand, respectively, for the
voltage applied on the stator windings, and TL represents
the load torque perturbation. The constants ci, i = 0, ..., 7
are defined as follows:c0 = 1

J , c1 =
3
2
Mnp
JLr

, c2 =
Rr
Lr
, c3 =

RrM
Lr

, c4 =
Rr
Lr

M
LsLr−M2 , c5 =

M
LsLr−M2 , c6 =

RsL
2
r+RrM

2

Ls(LsLr−M2) ,

c7 =
Lr

LsLr−M2

with Ls, Lr and M , respectively, being the stator and
rotor inductances and mutual inductance between the rotor
and the stator, Rs and Rr, the stator and rotor resistances,
J the rotor moment of inertia and np the number of stator
winding pole pairs.
Commonly, induction motor applications require not

only the shaft speed regulation, but also the flux magnitude
φ = χ22+χ23 regulation. Based on this model, the so-called
dynamic block controllable neural network is proposed.

III. Nonlinear observer

ince the currents and velocity are the only measurable
variables the rotor fluxes estimation is required for neural
networks identification. This flux estimator was proposed
in [9]; it is a partial state observer with adjustable conver-
gence rate. This features enables to reduce the number of
calculations comparing with a full state observer. To ob-
tain the flux estimation, only the stator currents dynamics
is used. The proposed observer has the following form

.
χ̃4 = −c5χ4 + c6u1 + vα
.
χ̃5 = −c5χ5 + c6u2 + vβ

where χ̃4 and χ̃5 are the estimation of currents χ4 and χ5
and v = [vα vβ ]>is the observer input.
Let define current observer error as εα = χ4 − χ̃4 and

εβ = χ5 − χ̃5, whose dynamics is given by

ε̇α = c4χ2 + c5npχ1χ3 − vα
ε̇α = c4χ3 − c5npχ1χ2 − vβ .

Then, on the sliding surface εα, εβ = 0, the following in-
variance equation is satistied

0 = c4χ2 + c5npχ1χ3 − vαeq (2)

0 = c4χ3 − c5npχ1χ2 − vβeq
with veq = [vαeq, vβeq]> as the equivalent value of v.
Now, based on unit control, vα and vβ are selected as

vα = l1
εα

|εα|+ δ
and vβ = l2

εβ
|εβ |+ δ

with l1, l2 and δ are positive observer parameters.
If l1, l2 are enough large and δ is sufficiently small we

garantee a sliding motion on surface εα, εβ = 0. So v is
taken as an estimated of veq. Therefore we can express (2)
as ·

c4 c5npχ1
−c5npχ1 c4

¸ ·
χ2
χ3

¸
=

·
vα
vβ

¸
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from the this equation, it is possible to obtain the estima-
tion of χ2 and χ3 as·

χ̂2
χ̂3

¸
=

1

c24 + (c5npχ1)
2

·
c4 −c5npχ1

c5npχ1 c4

¸ ·
vα
vβ

¸

where the estimated fluxes are χ̃2 and χ̃3. For the rest of
the calculations on this chapter, the estimated fluxes are
considered as the real ones.

IV. On-line Identification

Usually, for nonlinear control systems, the plant model
is obtained from the plant physics. For neural control, we
propose to build a neural model based on a given plant
model structure. The RHONN scheme is very flexible and
allows to incorporate to the neural identifier a priori infor-
mation about the plant structure.
Hence, second-order RHONN is used as the identifier

[6]. In order to introduce the most possible information
about the induction motor and based on the mathematical
models for induction motors (1), the following neural model
is proposed [9]

ẋ1 = −a1x1 + w11S(χ1) + w12S(χ3)χ4 + w13S(χ2)χ5
ẋ2 = −a2x2 + w21S(χ2) + w22S(χ1)S(χ3) + w23χ4 (3)
ẋ3 = −a3x3 + w31S(χ3) + w32S(χ1)S(χ2) + w33χ5
For this model w1 = [w11, w12, w13]

>, w2 =
[w21, w22, w23]

> and w3 = [w31, w32, w33]
> are the adap-

tive RHONN parameters.
with ai > 0, i = 1, ..., 3, wi,j are time-varying weights,

and S(·) a smooth sigmoid function formulated by:

S(x) =
2

1 + exp(−βx) − 1

for the sigmoid S(x) ∈ [−1, 1].
For this neural model, x1 is called neural speed or veloc-

ity, and x2 and x3 are the neural fluxes, so they are used
to identify χ1, χ2 and χ3 respectively.

A. Robust Weight Update Law

In case when the modelling error term is not zero we can
not guarantee neither the boundness of the parameters nor
the convergence to zero of the identification error. Then
we need to apply an adaptive law with the σ-modification
[5] in order to guarantee at least, that the identification
error and the weights are bounded for any time. Hence we
propose the adaptive law

ẇi = −Γ−1i (eiρi − σiwi), i = 1, 2, 3 (4)

where σi is given as:

σi =


0, if ||wi|| ≤Mi³

||wi||
Mi

´q
σi0, if Mi < ||wi|| ≤ 2Mi

σi0, if ||wi|| > 2Mi

with integer q ≥ 1 , and σi0 and Mi positive constants.
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Fig. 3. Block scheme

V. Neural Block Controller

The proposed identification and control scheme Fig. 3 is
based on the following proposition
Proposition 1: Given a desired output trajectory, ex-

pressed on output variables as yr, a nonlinear system with
output yP, and a neural network output yP then it is pos-
sible to establish the inequality

kyr − yPk2 ≤ kyN − yPk2 + kyr − yNk2
where k·k2 stands for the Euclidean norm.
Where yr−yP is called the output system error tracking,

yN − yP the output identification error and yN− yrthe
output RHONN error tracking. Hence, it is possible to
divide the tracking problem in two parts:
a) Minimization of kyN − yPk2 ,which can be achieved

by the proposed on-line identification algorithm.
b) Minimization of kyN−yrk2 , for which a tracking al-

gorithm is developed on the basis of the neural identifier
(3). The second goal can be reached by designing a control
law based on the RHONN model. To design such controller
we propose to use the so called Neural Block Control [15],
[14]. This control technique requires the plant to have the
Block Controllable Form (BCF) [8], so a RHONN identi-
fier with BCF is proposed. Based on this neural model a
discontinuous control law, which combines block control [8]
and VSC with sliding mode technique [16], is derived. The
block control approach is used to design a nonlinear sliding
surface such that the resulting sliding mode dynamics is
described by a desired linear system.
One additional advantage about using VSC is the sepa-

ration of the system dynamics in two motions, so that, only
a partial state RHONN is needed to derive the control law..

A. VSC Neural Block Controller Design

The output variables to be controlled are the speed χ1
and the neural flux magnitude φ, respectively. Now, let
define the neural flux magnitude as ϕ = x22 + x

2
3, then,

according to Proposition 1 the plant output is yP = [χ1
φ]>, the neural output is yN = [x1 ϕ]> and the reference
signal is yr = [ωr ϕr]

>.
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The model (3) has a quasi NBC ( Nonlinear Block Con-
trollable) form, consisting of two blocks:

ẋ1 = f̃1(x1,χ1,w) + B̃1(χ1,w)χ1
χ̇2 = f2(χ1,χ2) +B2u (5)

with x1 = [x1,x2,x3]
>, χ2 = [χ4,χ5]

>, u = [uα,uβ ]
>,

n1 = 3 and n2 = m = 2.

f̃1(x1,χ1,w) =

 −a1x1 + w11S(χ1) + w14
−a2x2 + w21S(χ2) + w22S(χ1)S(χ3)
−a3x3 + w31S(χ3) + w32S(χ1)S(χ2)



B̃1(x1,w) =

 −w12S(χ3) w13S(χ2)
w23 0
0 w33


For shorter notation all the weights are ordered in one

vector w = [w>1 w
>
2 w

>
3 ]
>
. This model can be reduced to

the NBC-form [8], and therefore the block control method-
ology is applied. At first, the tracking error for neural
output is rewritten as

z1 =

·
z1
z2

¸
=

·
x1 − ωr
ϕ− ϕr

¸
(6)

Then, the tracking error dynamics can be expressed as
the first block of the NBC-form:

ż1= f̄1(x1,χ1,w,ẏr)+B̄1(χ1,w)χ2 (7)

where B̄1(χ1,w) =

·
w12S(χ3) w13S(χ2)
2w23χ2 2w33χ3

¸
, f̄11 =

−a1x1 + w11S(χ1) + w14 − ω̇r and

f̄12 = 2x2 (−a2x2 + w21S(χ2) + w22S(x1)S(χ3)) +

2x3(−a3x3 + w31S(χ3) + w32S(χ1)S(χ2))− ϕ̇r

Due to time variant nature of RHONN weights, we can
not guarantee that rank(B̄1)= 2 for all time, so we assume
that those parameters do not change their signs, keeping
B̄1 as a full rank matrix
To derive the control law, let start from equation (6),

but with a slight change, which yields

ż1= f̄1(x1,χ1,w, ẏr) + B̄1(χ1,w)χ1= −Kz1+z2 (8)

Solving the equation (8) for z2 results

z2= f̄1(x1,χ1,w, ẏr) + B̄1(χ1,w)χ2+Kz1

Then the dynamics for z2 are

ż2= f̄2(x1,χ,w,yr, ẏr) + B̄2(χ1,w)u (9)

where f̄2(x1,χ,w,yr, ẏr) =
∂z2
∂x1
f̃1 +

∂z2
∂χ1

f1 +
∂z2
∂χ2

f2 +
∂z2
∂yr
ẏr+

∂z2
∂ẏr
ÿr +

∂z2
∂w ẇ and B̄2(χ1,w) = B̄1(χ1,w)B2.

Now, we select the desired sliding manifold as z2 = 0.
The next scope is to design a control law that forces the
system to reach the desired manifold. This controller must
be a logic function which maps from the continuous state
x to the admissible input vectors set U (see Table 1), in
order to switch the control binary variables, such that, the
desired voltage feeds the induction motor.

B. Sliding Modes Controller Design

Assumption 1. There exists at least one discrete value
uk ∈ U , such that
sign(B̄2(χ1,w)uk) = −sign(z2), for all z2 with χ2,χ3 6= 0

(10)

The controller must select one element of U that satisfies
(10), and then change the binary variables such that the
selected input vector is fed to the stator windings. By
using the model (1) instead of (3), the above assumption
is proved in the Appendix (Section VIII).
Now we analyze the controller stability. Let b̄21, b̄22 the

rows of B̄2(χ1,w), then it can be expressed as

B̄2(χ1,w)uk ==

· ¯̄
b̄21uk

¯̄
0

0
¯̄
b̄22uk

¯̄ ¸ · sign(b̄21uk)
sign(b̄22uk)

¸
(11)

Using (10), the above expression can be formulated as

B̄2(χ1,w)uk =

· ¯̄
b̄21uk

¯̄
0

0
¯̄
b̄22uk

¯̄ ¸ sign(B̄2(χ1,w)uk)
= −

· ¯̄
b̄21uk

¯̄
0

0
¯̄
b̄22uk

¯̄ ¸ sign(z2)
Hence, (9) is rewritten as

ż2= f̄2(x1,χ,w,yr)−B0(χ1,w,u)sign(z2) (12)

where

B0(χ1,w,u) =
· ¯̄
b̄21uk

¯̄
0

0
¯̄
b̄22uk

¯̄ ¸
Which guarantees a sliding mode on the surface z2 = 0

at some finite time. under the condition¯̄
f̄21
¯̄
<
¯̄
b̄21uk

¯̄
and

¯̄
f̄22
¯̄
<
¯̄
b̄21uk

¯̄
(13)

Then the sliding dynamics, in the tracking errors vari-
ables z1 and z2 (6), is governed by the second order linear
system

ż1 = −k1z1
ż2 = −k2z2

with desired eigenvalues −k1 and −k2.
Note that some of the available input vectors, presented

in Table 1 may satisfy the condition (10), at the same time;

we select the input vector that maximizes
°°°B̄2(χ1,w)uk°°°,

in order to increase the sliding motion stability margin
given by (13).
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VI. Simulation Results

We simulate the proposed control scheme using Simulink
Matlab R°. The nominal values of the induction motor pa-
rameters are: Rs = 12.53Ω, Ls = 0.2464H, M = 0.2219H,
Rr = 11.16Ω, Lr = 0.2464H, np = 2, J = 0.01Kgm, The
design parameters for the fluxes observer are l1, l2 = 3500
and δ = 0.1; for the neural network, we selected a1 = 18,
a2 = a3 = 500, β = 0.1, Γ−11 = diag{200, 200, 200},
Γ−12 = Γ−13 = diag{500, 500, 50}, and k1 = 160 k2 = 140,
ωr = 100Rad/s and ϕr = 0.15.
In order to test the proposed scheme performance, a vari-

ation of 2 Ohm per second is added to the stator resistance,
in addition the load torque is a switching signal, see Fig.7.
The results for velocity and flux are presented in Fig. 5

and Fig. 6, respectively. As can be seen, the performance
of the proposed scheme is very satisfactory under distur-
bances.

VII. Conclusions and Future Work

In this paper, we have proposed a VSC methodology,
for induction motors, which guarantees asymptotic sta-

0 0.5 1 1.5
0

1

2

3

4

5

6

7

8

Time (s) 

Flux Magnitud (Wb  ) 
2 

ϕ

χ 
2 3 

χ + 
2 2 

ϕ
r 

Fig. 6. Motor flux magitud χ22 + χ23, neural flux magnitude ϕ and
its reference ϕr

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

T L 

Torque (Nm) 

Time (s)

Fig. 7. Load torque TL

bility under one of the hardest technological constraints,
the switching nature of the electrical drivers. This control
scheme let us to avoid the PWM approach, and gives us
an actuator model closer to the real one. The stability, for
both the neural identifier and the controller, is analyzed,
and it is proved that the proposed control law forces the
closed loop trajectory to converge and to stay in a mani-
fold, which guarantees that the tracking error is zero. The
robustness of this control scheme is tested in presence of
different kind of disturbances such as load torque variations
and change on the induction motor parameters.
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VIII. Appendix

Suppose that we are control law in based on model
(1) insted of (3). Following the block control technique
until equation (9), then the term B̄2(x1)u describes a
x1−dependent bilinear transformation, which maps from
the discrete input space U to the continuous space, or
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B̄2(x1)u : U → <2. Because the matrix B̄2(x1) has full
rank for all ψα,ψβ 6= 0, it maps from two different elements
of U onto different vectors in <2. Now, we rewrite

B̄2= B
0
2B0

where B02 =
·
c1c7 0
0 2c3c7

¸
, B0 =

· −χ3 χ2
χ2 χ3

¸
Hence, the mapping B̄2 can be seen as a composition of

two transformations defined by B0 and B02.
In order to have a simple terminology, we establish the

following definition:
Definition 2: A 2-by-1 vector set covers all the quadrants

in <2 space, if at least one of them lies on each one of the
space quadrants.
As can be seen in Fig. 2, U covers all the quadrants of

the input space. Let V be the image of the set U under the
mapping B0. By the following lemma we can assure that
V also covers all the quadrants.
Lemma 3: The angle between any pair of vectors of U is

equal to the one between their corresponding images under
the mapping B0.

Proof: B0 is a symmetric type matrix, whose columns
b01 and b02 are orthogonal and b>01b01= b

>
02b02 = ϕ. It

follows that B>0B0 = ϕI, hence kB0uk =
p
u>B>0B0u =√

ϕ kuk. Let ui and uj be two different elements in U . By
the Euclidean inner product, we have

u>i uj = kuik kujk cos(θ)

where θ is the angle between the vectors. Let vi,vj ∈ V be
the images of uj and uj, respectively, then

v>i vj = kvik kvjk cos(θ0) (14)

with θ0 the angle between vi and vj. Now substituting
v = B0u in (14) we obtain

u>i B
>
0B0uj = ϕu>i uj = ϕ kuik kujk cos (θ0)

then cos(θ0) = cos(θ), and the proof is completed.
The following lemma states the sliding mode controller

viability, using only the available input vectors given by
the Table 1.
Lemma 4: There exists at least one available input vector

uk ∈ U , such that

sign(B̄2uk) = −sign(z2), for all z2 and ψα ,ψβ 6= 0
(15)

Proof: This lemma statement is equivalent to say
that the images of U under B̄2 covers all the quadrants.
From Lemma 3, it follows that V covers all the quadrants.
Now let W be the image of V under B02. It is clear that
this mapping just changes the axes scale. Hence, it does
not move any vector from its original quadrant, hence W
covers all the quadrants too. Then, we can conclude that
there exists, at least, one image of the elements of U under
B̄2 on each quadrant of <2. Hence, there is one or more
available input vectors that satisfies (15).
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